The availability of dense molecular markers has made possible the use of genomic selection (GS) for plant breeding. However, the evaluation of models for GS in real plant populations is very limited. This article evaluates the performance of parametric and semiparametric models for GS using wheat (Triticum aestivum L.) and maize (Zea mays) data in which different traits were measured in several environmental conditions. The findings, based on extensive cross-validations, indicate that models including marker information had higher predictive ability than pedigree-based models. In the wheat data set, and relative to a pedigree model, gains in predictive ability due to inclusion of markers ranged from 7.7 to 35.7%. Correlation between observed and predictive values in the maize data set achieved values up to 0.79. Estimates of marker effects were different across environmental conditions, indicating that genotype 3 environment interaction is an important component of genetic variability. These results indicate that GS in plant breeding can be an effective strategy for selecting among lines whose phenotypes have yet to be observed.
In a soil and plant survey, and in field and greenhouse experiments the nutritional status of wheat plants was evaluated for Zn, Fe, Mn and Cu in Central Anatolia, a semi-arid region and the major wheat growing area of Turkey.All 76 soils sampled in Central Anatolia were highly alkaline with an average pH of 7. 9. More than 90% of soils contained less than 0.5 mg kg -1 DTPA-extractable Zn, which is widely considered to be the critical deficiency concentration of Zn for plants grown on calcareous soils. About 25% of soils contained less than 2.5 mg kg-I DTPA-extractable Fe which is considered to be the critical deficiency concentration of Fe for plants. The concentrations of DTPA-extractable Mn and Cu were in the sufficiency range. Also the Zn concentrations in leaves were very low. More than 80% of the 136 leaf samples contained less than 10 mg Zn kg -I. By contrast, concentrations of Fe, Mn and Cu in leaves were in the sufficient range.In the field experiments at six locations, application of 23 kg Zn ha -1 increased grain yield in all locations. Relative increases in grain yield resulting from Zn application ranged between 5% to 554% with a mean of 43%. Significant increases in grain yield (more than 31%) as a result of Zn application were found for the locations where soils contained less than 0.15 mg kg-1 DTPA-extractable Zn.In pot experirnents with two bread (Triticum aestivum, cvs. Gerek-79 and Kirac-66) and two durum wheats (Triticum durum, cvs. Kiziltan-91 and Kunduru-1149), an application of 10 mg Zn kg-t soil enhanced shoot dry matter production by about 3.5-fold in soils containing 0.11 mg kg -l and 0.15 mg kg -I DTPA-extractable Zn. Results from both field observations and greenhouse experiments showed that durum wheats were more susceptible to Zn deficiency than the bread wheats. On Zn deficient soils, durum wheats as compared to bread wheats developed deficiency symptoms in shoots earlier and to a greater extent, and had lower Zn concentration in shoot tissue and lower Zn content per shoot than the bread wheats.The results presented in this paper demonstrate that (i) Zn deficiency is a critical nutritional problem in Central Anatolia substantially limiting wheat production, (ii) durum wheats possess higher sensitivity to Zn deficient conditions than bread wheats, and (iii) wheat plants grown in calcareous soils containing less than 0.2 mg kg -1 DTPA-extractable Zn significantly respond to soil Zn applications. The results also indicate that low levels of Zn in soils and plant materials (i.e. grains) could be a major contributing factor for widespread occurrence of Zn deficiency in children in Turkey, whose diets are dominated by cereal-based foods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.