The influence of varied Mg supply (10-1000 micromolar) and light intensity (100-580 microeinsteins per square meter per second) on the concentrations of ascorbate (AsA) and nonprotein SH-compounds and the activities of superoxide dismutase (SOD; EC 1.15.11) and the H202 scavenging enzymes, AsA peroxidase (EC 1.11.1.7), dehydroascorbate reductase (EC 1.8.5.1), and glutathione reductase (EC 1.6.4.2) were studied in bean (Phaseolus vulgaris L.) leaves over a 13-day period. The concentrations of AsA and SH-compounds and the activities of SOD and H202 scavenging enzymes increased with light intensity, in particular in Mg-deficient leaves. Over the 12-day period of growth for a given light intensity, the concentrations of AsA and SH-compounds and the activities of these enzymes remained more or less constant in Mg-sufficient leaves. In contrast, in Mg-deficient leaves, a progressive increase was recorded, particularly in concentrations of AsA and activities of AsA peroxidase and glutathione reductase, whereas the activities of guaiacol peroxidase and catalase were only slightly enhanced. Partial shading of Mgdeficient leaf blades for 4 days prevented chlorosis, and the activities of the°2-and H202 scavenging enzymes remained at a low level. The results demonstrate the role of both light intensity and Mg nutritional status on the regulation of 02-and H202 scavenging enzymes in chloroplasts.Photoreduction of molecular 02 in chloroplasts is unavoidable and leads to the production of superoxide anion radicals (02 -) and H202 (1, 29). In nonstressed chloroplasts, photoreduction of 02 is estimated to be between 5 and 27% of the total electron flow (2, 3). Superoxide anion radicals, H202, and their derivatives hydroxyl radicals (OH,) and singlet oxygen ('02) are highly toxic, resulting in destructive effects on the functional and structural integrity of chloroplasts (8,17). As protection against these toxic 02 species, chloroplasts are equipped with several antioxidants and defense enzymes.SOD,2 mostly localized in chloroplasts in leaves (19)
Plants exposed to environmental stress factors, such as drought, chilling, high light intensity, heat, and nutrient limitations, suffer from oxidative damage catalyzed by reactive oxygen species (ROS), e.g., superoxide radical (O2 • –), hydrogen peroxide (H2O2) and hydroxyl radical (OH • ). Reactive O2 species are known to be primarily responsible for impairment of cellular function and growth depression under stress conditions. In plants, ROS are predominantly produced during the photosynthetic electron transport and activation of membrane‐bound NAD(P)H oxidases. Increasing evidence suggests that improvement of potassium (K)‐nutritional status of plants can greatly lower the ROS production by reducing activity of NAD(P)H oxidases and maintaining photosynthetic electron transport. Potassium deficiency causes severe reduction in photosynthetic CO2 fixation and impairment in partitioning and utilization of photosynthates. Such disturbances result in excess of photosynthetically produced electrons and thus stimulation of ROS production by intensified transfer of electrons to O2. Recently, it was shown that there is an impressive increase in capacity of bean root cells to oxidize NADPH when exposed to K deficiency. An increase in NADPH oxidation was up to 8‐fold higher in plants with low K supply than in K‐sufficient plants. Accordingly, K deficiency also caused an increase in NADPH‐dependent O2 • – generation in root cells. The results indicate that increases in ROS production during both photosynthetic electron transport and NADPH‐oxidizing enzyme reactions may be involved in membrane damage and chlorophyll degradation in K‐deficient plants. In good agreement with this suggestion, increases in severity of K deficiency were associated with enhanced activity of enzymes involved in detoxification of H2O2 (ascorbate peroxidase) and utilization of H2O2 in oxidative processes (guaiacol peroxidase). Moreover, K‐deficient plants are highly light‐sensitive and very rapidly become chlorotic and necrotic when exposed to high light intensity. In view of the fact that ROS production by photosynthetic electron transport and NADPH oxidases is especially high when plants are exposed to environmental stress conditions, it seems reasonable to suggest that the improvement of K‐nutritional status of plants might be of great importance for the survival of crop plants under environmental stress conditions, such as drought, chilling, and high light intensity. Several examples are presented here emphasizing the roles of K in alleviating adverse effects of different abiotic stress factors on crop production.
Micronutrient malnutrition affects over 2 billion people in the developing world. Iron (Fe) deficiency alone affects >47% of all preschool aged children globally, often leading to impaired physical growth, mental development, and learning capacity. Zinc (Zn) deficiency, like iron, is thought to affect billions of people, hampering growth and development, and destroying immune systems. In many micronutrient‐deficient regions, wheat is the dominant staple food making up >50% of the diet. Biofortification, or harnessing the powers of plant breeding to improve the nutritional quality of foods, is a new approach being used to improve the nutrient content of a variety of staple crops. Durum wheat in particular has been quite responsive to breeding for nutritional quality by making full use of the genetic diversity of Fe and Zn concentrations in wild and synthetic parents. Micronutrient concentration and genetic diversity has been well explored under the HarvestPlus biofortification research program, and very positive associations have been confirmed between grain concentrations of protein, Zn, and Fe. Yet some work remains to adequately explain genetic control and molecular mechanisms affecting the accumulation of Zn and Fe in grain. Further, evidence suggests that nitrogen (N) nutritional status of plants can have a positive impact on root uptake and the deposition of micronutrients in seed. Extensive research has been completed on the role of Zn fertilizers in increasing the Zn density of grain, suggesting that where fertilizers are available, making full use of Zn fertilizers can provide an immediate and effective option to increase grain Zn concentration, and productivity in particular, under soil conditions with severe Zn deficiency.
Inhibition of root elongation and modification of membrane properties are sensitive responses of plants to aluminium. The present paper reports on the effect of AI on lipid peroxidation and activities of enzymes related to production of activated oxygen species. Soybean seedlings (Glycine max L. cv. Sito) were precultured in solution culture for 3–5 days and then treated for 1–72 h with Al (AICI3) concentrations ranging from 10 to 75 μM at a constant pH of 4.1. In response to Al supply, lipid peroxidation in the root tips (< 2 cm) was enhanced only after longer durations of treatment. Aluminium‐dependent increase in lipid peroxidation was intensified by Fe2+ (FeSO4). A close relationship existed between lipid peroxidation and inhibition of root‐elongation rate induced by Al and/or Fe toxicity and/or Ca deficiency. Besides enhancement of lipid peroxidation in the crude extracts of root tips due to Al, the activities of superoxide dismutase (EC 1.15.1.1) and peroxidase (EC 1.11.1.7) increased, whereas catalase (EC 1.11.1.6) activity decreased. This indicates a greater generation of oxygen free radicals and related tissue damage. The results suggest that lipid peroxidation is part of the overall expression of Al toxicity in roots and that enhanced lipid peroxidation by oxygen free radicals is a consequence of primary effects of Al on membrane structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.