We show that high-grade astrocytic tumors with high levels of galectin-1 expression are associated with dismal prognoses. The immunohistochemical analysis of galectin-1 expression of human U87 and U373 glioblastoma xenografts from the brains of nude mice revealed a higher level of galectin-1 expression in invasive areas rather than non-invasive areas of the xenografts. Nude mice intracranially grafted with U87 or U373 cells constitutively expressing low levels of galectin-1 (by stable transfection of an expression vector containing the antisense mRNA of galectin-1) had longer survival periods than those grafted with U87 or U373 cells expressing normal levels of galectin-1. Galectin-1 added to the culture media markedly and specifically increased cell motility levels in human neoplastic astrocytes. These effects are related to marked modifications in the organization of the actin cytoskeleton and the increase in small GTPase RhoA expression. All the data obtained indicate that galectin-1 enhances the migratory capabilities of tumor astrocytes and, therefore, their biological aggressiveness.
Galectins, a family of mammalian lectins with specificity to -galactosides, are involved in growthregulatory mechanisms and cell adhesion. A relationship is assumed to exist between the levels of expression of galectins and the level of malignancy in human gliomas. A comparative study of this aspect in the same series of clinical samples is required to prove this hypothesis. Using computerassisted microscopy, we quantitatively characterized by immunohistochemistry the levels of expression of galectins-1, -3 and -8 in 116 human astrocytic tumors of grades I to IV. Extent of transcription of galectins-1, -3, and -8 genes was investigated in 8 human glioblastoma cell lines by means of RT-PCR techniques. Three of these cell lines were grafted into the brains of nude mice in order to characterize in vivo the galectins-1, -3 and -8 expression in relation to the patterns of the tumor invasion of the brain. The role of galectin-1, -3 and -8 in tumor astrocyte migration was quantitatively determined in vitro by means of computer-assisted phase-contrast videomicroscopy. The data indicate that the levels of galectin-1 and galectin-3 expression significantly change during the progression of malignancy in human astrocytic tumors, while that of galectin-8 remains unchanged. These three galectins are involved in tumor astrocyte invasion of the brain parenchyma since their levels of expression are higher in the invasive parts of xenografted glioblastomas than in their less invasive parts. Galectin-3, galectin-1, and to a lesser extent galectin-8, markedly stimulate glioblastoma cell migration in vitro. Since bands for the transcripts of human galectins-2, -4 and -9 were apparently less frequent and intense in the 8 human glioblastoma cell lines, this system provides an excellent model to assign defined roles to individual galectins and delineate overlapping and distinct functional aspects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.