1. The influence of halogen substituents on the 1,2-dioxygenation of catechols was investigated. The results obtained with the two isoenzymes pyrocatechase I and pyrocatechase II from the haloarene-utilizing Pseudomonas sp. B 13 and the pyrocatechase from benzoate-induced cells of Alcaligenes eutrophus B.9 were compared. 2. Substituents on catechol were found to interfere with O2 binding by the two isoenzymes from Pseudomonas sp. B 13, whereas the Km value for catechol kept constant at different O2 concentrations. 3. Electron-attracting substituents decreased the Km values for catechols. 4. Results from binding studies with substituted catechols demonstrated narrow stereospecificities of pyrocatechase I from pseudomonas sp. B 13 and the pyrocatechase from alcaligenes eutrophus B.9. In contrast, a low steric hindrance by substituents in the binding of catechols with pyrocatechase II was observed. 5. Low pK'1 values of substituted catechols resulted in low Michaelis constants. 6. Electron-attracting substituents such as halogen decreased the reaction rates of catechol 1,2-dioxygenation. The correlation of the Vmax. values observed with pyrocatechase II from Pseudomonas sp. B 13 with the substituent constant sigma+ (Okamoto--Brown equation) was distinctly greater than with Hammett's sigma values. The corresponding logVmax. against sigma+ correlation for pyrocatechase I was considerably disturbed by steric influences of the substituents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.