Assessment of lower extremity bilateral asymmetries in soccer players is important for both injury prevention and performance. The purpose of this investigation was to compare isokinetic knee extensor assessment of asymmetry with a more specific countermovement jump (CMJ). Forty-six Brazilian male professional soccer players participated in this study. The maximal power, maximal force and impulse were determined during CMJ and the total work and peak torque at 60, 180, and 300°·s during isokinetic leg extension, separately for each leg. Factor analysis was performed for all investigated variables, and the diagnostic concordance between different criteria was analyzed by McNemar's χ test. The factor analysis showed that the isokinetic and CMJ tests were widely independent methods for the assessment of bilateral differences. Concordance of the diagnostic information could only be found between the maximal force during CMJ and the total work and peak torque at 180 and 300°·s during isokinetic leg extension. Impulse and maximal power during CMJ on a double force platform appear to be appropriate additional variables for the identification of bilateral differences. Therefore, it might be pertinent to perform, in addition to isokinetic assessment, a vertical jump test on a force platform to assure widespread and reliable diagnostic information.
This study aimed to identify the characteristics associated to quality of life (QOL)
The aim of the present study was to compare the acute effects of constant torque (CT) and constant angle (CA) stretching exercises on the maximum range of motion (ROMmax), passive stiffness (PS), and ROM corresponding to the first sensation of tightness in the posterior thigh (FSTROM). Twenty-three sedentary men (age, 19-33 years) went through 1 familiarization session and afterward proceeded randomly to both CA and CT treatment stretching conditions, on separate days. An isokinetic dynamometer was used to analyze hamstring muscles during passive knee extension. The subjects performed 4 stretches of 30 seconds each with a 15-second interval between them. In the CA stretching, the subject reached a certain ROM (95% of ROMmax), and the angle was kept constant. However, in the CT stretching exercise, the volunteer reached a certain resistance torque (corresponding to 95% of ROMmax) and it was kept constant. The results showed an increase in ROMmax for both CA and CT (p < 0.001), but the increase was greater for CT than for CA (CA vs. CT in poststretching, p = 0.002). Although the PS decreased for both CA and CT (p < 0.001), the decrease was greater for CT than for CA (CA vs. CT in poststretching, p = 0.002). The FSTROM increased for both CA and CT, but the increase for CT was greater than that for CA (CA vs. CT in poststretching, p = 0.003). The greater increase in ROMmax for the CT stretch may be explained by greater changes in the biomechanical properties of the muscle-tendon unit and stretch tolerance, as indicated by the results of PS and FSTROM.
There are well-known biological differences between women and men, especially in technicalcoordinative variations that contribute to sex differences in performance of complex movements like the most important offensive action in volleyball, the spike jump. The aim of this study was to investigate sex-dependent performance and biomechanical characteristics in the volleyball spike jump. Thirty female and male sub-elite volleyball players were analysed while striking a stationary ball with maximal spike jump height. Twelve MX13 Vicon cameras with a cluster marker set, two AMTI force plates, surface EMG, and a Full-Body 3D model in Visual3D were used. Main findings include sex differences (P< .05) in jump height (pη 2 = .73), approach [speed (pη 2 = .61), step length], transition strategy [plant angle, neuromuscular activation (pη 2 = .91), horizontal force maxima and impulses], acceleration distances [centre of mass displacement (pη 2 = .21), minimal knee and hip angles], use of torso and arms [incline, angular velocity (pη 2 = .23)]. Correlations support that the results cannot be explained fully by strength and power differences between sexes but represent the product of technical-coordinative variations. Their relevance is acknowledged for both sexes and numerous performance determinants displayed sex differences. The integration of such attributes into sexspecific training seems promising but its effect requires further investigation.
We present a critical reflection on the mechanical variable Player Load, which is based on acceleration data and commonly used in sports. Our motivation to write this paper came from the difficulties that we encountered in the calculation and interpretation of Player Load using our own data, since we did not use the Catapult Sports equipment, which is a merchandise of the company that proposed this variable. We reviewed existing literature in order to understand Player Load better; we found many inconsistencies in PL calculation methods and in the meanings attached to it. Accordingly, this paper presents a brief discussion on the meanings that have been assigned to Player Load, its limitations, and the lack of clear and complete information about Player Load calculation methods. Moreover, the use of arbitrary units and different practical meanings in the literature has associated Player Load with many physical quantities, thereby resulting in difficulties in determining what Player Load measures within the context of sports. It seems that Player Load is related to the magnitude of changes in acceleration, but not the magnitude of acceleration itself. Therefore, coaches and sports scientists should take this information into account when they use Player Load to prescribe and monitor external loads. We concluded that a deeper discussion of Player Load as a descriptor of external load is warranted in the sports sciences literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.