Two novel ruthenium-based olefin metathesis catalysts, H(2)ITap(PCy(3))Cl(2)Ru[double bond, length as m-dash]CH-Ph and H(2)ITapCl(2)Ru[double bond, length as m-dash]CH-(C(6)H(4)-O-iPr) (H(2)ITap = 1,3-bis(2',6'-dimethyl-4'-dimethylaminophenyl)-4,5-dihydroimidazol-2-ylidene), were synthesized bearing a pH-responsive NHC ligand with two aromatic NMe(2) groups. The crystal structures of complexes and were determined via X-ray crystallography. Both catalysts perform ring opening metathesis polymerization (ROMP) of cyclooctene (COE) at faster rates than their commercially available counterparts H(2)IMes(PCy(3))Cl(2)Ru[double bond, length as m-dash]CH-Ph and H(2)IMesCl(2)Ru[double bond, length as m-dash]CH-(C(6)H(4)-O-iPr) (H(2)IMes = 1,3-bis(2',4',6'-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene) and perform at similar rates during ring closing metathesis (RCM) of diethyldiallylmalonate (DEDAM). Upon addition of 2 equiv. of HCl, catalyst is converted into a mixture of several mono and diprotonated Ru-carbene species 12' which are soluble in methanol but degrade within a few hours at room temperature. Catalyst can be protonated with 2 equiv. of HCl and the resulting complex is moderately water-soluble. The complex is stable in aqueous solution in air for >4 h, but over prolonged periods of time shows degradation in acidic media due to hydrolysis of the NHC-Ru bond. Catalysts and perform RCM of diallylmalonic acid in acidic protic media with only moderate activity at 50 degrees C and do not produce polymer in the ROMP of cationic 7-oxanorbornene derivative under the same conditions. Catalyst was used for Ru-seperation studies when RCM of DEDAM or 3,3-diallypentadione (DAP) was conducted in low-polar organic solution and the Ru-species was subsequently precipitated by addition of strong acid. The Ru-species were removed by (1) filtration and (2) filtration and subsequent extraction with water. The residual Ru-levels could be reduced to as far as 11 ppm (method 2) and 24 ppm (method 1) without the use of chromatography or other scavenging methods.
A set of heterogenized olefin-metathesis catalysts, which consisted of Ru complexes with the H(2)ITap ligand (1,3-bis(2',6'-dimethyl-4'dimethyl aminophenyl)-4,5-dihydroimidazol-2-ylidene) that had been adsorbed onto a silica support, has been prepared. These complexes showed strong binding to the solid support without the need for tethering groups on the complex or functionalized silica. The catalysts were tested in the ring-opening-ring-closing-metathesis (RO-RCM) of cyclooctene (COE) and the self-metathesis of methyl oleate under continuous-flow conditions. The best complexes showed a TON>4000, which surpasses the previously reported materials that were either based on the Grubbs-Hoveyda II complex on silica or on the classical heterogeneous Re(2)O(7)/B(2)O(3) catalyst.
Thermolysis in the solid state of Cs+[arachno-CB9H14]-, or of Cs+[nido-CB9H12]-, or the oxidation of nido-1-CB8H12 with I2 in THF at -78 degrees C in the presence of NEt3, gives the first nine-vertex closo monocarbaborane, the stable [closo-4-CB8H9]- anion, in yields of 56, 61 and 75%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.