The origin of Large Igneous Provinces (LIPs) associated with continental breakup and the reconstruction of continents older than ca. 320 million years (pre-Pangea) are contentious research problems. Here we study the petrology of a 615-590 Ma dolerite dyke complex that intruded rift basins of the magma-rich margin of Baltica and now is exposed in the Scandinavian Caledonides. These dykes are part of the Central Iapetus Magmatic Province (CIMP), a LIP emplaced in Baltica and Laurentia during opening of the Caledonian Wilson Cycle. The >1,000-km-long dyke complex displays lateral geochemical zonation from enriched to depleted basaltic compositions from south to north. Geochemical modelling of major and trace elements shows these compositions are best explained by melting hot mantle 75-250°C above ambient mantle. Although the trace element modelling solutions are nonunique, the best explanation involves melting a laterally zoned mantle plume with enriched and depleted peridotite lithologies, similar to present-day Iceland and to the North Atlantic Igneous Province. The origin of CIMP appears to have involved several mantle plumes. This is best explained if rifting and breakup magmatism coincided with plume generation zones at the margins of a Large Low Shear-wave Velocity Province (LLSVP) at the core mantle boundary. If the LLSVPs are quasi-stationary back in time as suggested in recent geodynamic models, the CIMP provides a guide for reconstructing the paleogeography of Baltica and Laurentia 615 million years ago to the LLSVP now positioned under the Pacific Ocean. Our results provide a stimulus for using LIPs as piercing points for plate reconstructions.
During the terminal stages of Wilson cycles, remnants of magma‐poor margins may be incorporated into the orogens, whereas the magma‐rich margins often are lost in subduction due to low buoyancy. The understanding of magma‐rich margins is therefore mostly based on drill holes and geophysical observations. In this contribution, we explore the temporal evolution and the ambient conditions of a magma‐rich rifted margin preserved within the Scandinavian Caledonides. The Scandinavian Dike Complex was emplaced into a sedimentary basin during the initial breakup and opening of the Iapetus Ocean 615 to 590 million years ago. The dike complex constitutes 70–90% of the magma‐rich, syn‐rift basins and is locally well preserved despite the complex Caledonian history. This contribution provides new observations about the geometry, relative timing, and development of the margin. Jadeite‐in‐clinopyroxene geothermobarometry, titanium‐in‐biotite geothermometry, and garnet isopleth modeling show that the ambient pressure and temperature conditions were similar for the entire dike complex at 0.25 to 0.45 GPa, with contact metamorphic temperatures up to approximately 700 °C. In the northernmost part of the study area, U‐Pb dating of magmatic zircon shows that partial melting of the sedimentary host rock, at relatively shallow levels, occurred at 612 Ma. This shows that the crust was molten already 6 million years before the northernmost dike swarm was emplaced at 605.7 ± 1.8 Ma. We propose that the locally pervasive partial melting occurred due to high geothermal gradients and introduction of mafic melt in the lower crust. These processes significantly reduced the strength of the crust, eventually facilitating continental breakup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.