A recently launched project under the auspices of the World Climate Research Program's (WCRP) Coordinated Regional Downscaling Experiments Flagship Pilot Studies program (CORDEX-FPS) is presented. This initiative aims to build first-ofits-kind ensemble climate experiments of convection permitting models to investigate present and future convective processes and related extremes over Europe and the Mediterranean. In this manuscript the rationale, scientific aims and approaches are presented along with some preliminary results from the testing phase of the project. Three test cases were selected in order to obtain a first look at the ensemble performance. The test cases covered a summertime extreme precipitation event over Austria, a fall Foehn event over the Swiss Alps and an intensively documented fall event along the Mediterranean coast. The test cases were run in both "weather-like" (WL, initialized just before the event in question) and "climate" (CM, initialized 1 month before the event) modes. Ensembles of 18-21 members, representing six different modeling systems with different physics and modelling chain options, was generated for the test cases (27 modeling teams have committed to perform the longer climate simulations). Results indicate that, when run in WL mode, the ensemble captures all three events quite well with ensemble correlation skill scores of 0.67, 0.82 and 0.91. They suggest that the more the event is driven by large-scale conditions, the closer the agreement between the ensemble members. Even in climate mode the large-scale driven events over the Swiss Alps and the Mediterranean coasts are still captured (ensemble correlation skill scores of 0.90 and 0.62, respectively), but the inter-model spread increases as expected. In the case over Mediterranean the effects of local-scale interactions between flow and orography and land-ocean contrasts are readily apparent. However, there is a much larger, though not surprising, increase in the spread for the Austrian event, which was weakly forced by the large-scale flow. Though the ensemble correlation skill score is still quite high (0.80). The preliminary results illustrate both the promise and the challenges that convection permitting modeling faces and make a strong argument for an ensemble-based approach to investigating high impact convective processes. Keywords Convection-permitting • Ensemble models • Climate applicationsThis paper is a contribution to the special issue on Advances in Convection-Permitting Climate Modeling, consisting of papers that focus on the evaluation, climate change assessment, and feedback processes in kilometer-scale simulations and observations. The special issue is coordinated by
Although the African Great Lakes are important regulators for the East African climate, their influence on atmospheric dynamics and the regional hydrological cycle remains poorly understood. This study aims to assess this impact by comparing a regional climate model simulation that resolves individual lakes and explicitly computes lake temperatures to a simulation without lakes. The Consortium for Small-Scale Modelling model in climate mode (COSMO-CLM) coupled to the Freshwater Lake model (FLake) and Community Land Model (CLM) is used to dynamically downscale a simulation from the African Coordinated Regional Downscaling Experiment (CORDEX-Africa) to 7-km grid spacing for the period of 1999-2008. Evaluation of the model reveals good performance compared to both in situ and satellite observations, especially for spatiotemporal variability of lake surface temperatures (0.68-K bias), and precipitation (2116 mm yr 21 or 8% bias). Model integrations indicate that the four major African Great Lakes almost double the annual precipitation amounts over their surface but hardly exert any influence on precipitation beyond their shores. Except for Lake Kivu, the largest lakes also cool the annual near-surface air by 20.6 to 20.9 K on average, this time with pronounced downwind influence. The lake-induced cooling happens during daytime, when the lakes absorb incoming solar radiation and inhibit upward turbulent heat transport. At night, when this heat is released, the lakes warm the near-surface air. Furthermore, Lake Victoria has a profound influence on atmospheric dynamics and stability, as it induces circular airflow with over-lake convective inhibition during daytime and the reversed pattern at night. Overall, this study shows the added value of resolving individual lakes and realistically representing lake surface temperatures for climate studies in this region.
This study evaluates the ability of 10 regional climate models (RCMs) from the Coordinated Regional Climate Downscaling Experiment (CORDEX) in simulating the characteristics of rainfall patterns over eastern Africa. The seasonal climatology, annual rainfall cycles, and interannual variability of RCM output have been assessed over three homogeneous subregions against a number of observational datasets. The ability of the RCMs in simulating large-scale global climate forcing signals is further assessed by compositing the El Niño-Southern Oscillation (ENSO) and Indian Ocean dipole (IOD) events. It is found that most RCMs reasonably simulate the main features of the rainfall climatology over the three subregions and also reproduce the majority of the documented regional responses to ENSO and IOD forcings. At the same time the analysis shows significant biases in individual models depending on subregion and season; however, the ensemble mean has better agreement with observation than individual models. In general, the analysis herein demonstrates that the multimodel ensemble mean simulates eastern Africa rainfall adequately and can therefore be used for the assessment of future climate projections for the region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.