IMPORTANCE Cancer is among the leading causes of death worldwide. Current estimates of cancer burden in individual countries and regions are necessary to inform local cancer control strategies. OBJECTIVE To estimate mortality, incidence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs) for 28 cancers in 188 countries by sex from 1990 to 2013. EVIDENCE REVIEW The general methodology of the Global Burden of Disease (GBD) 2013 study was used. Cancer registries were the source for cancer incidence data as well as mortality incidence (MI) ratios. Sources for cause of death data include vital registration system data, verbal autopsy studies, and other sources. The MI ratios were used to transform incidence data to mortality estimates and cause of death estimates to incidence estimates. Cancer prevalence was estimated using MI ratios as surrogates for survival data; YLDs were calculated by multiplying prevalence estimates with disability weights, which were derived from population-based surveys; YLLs were computed by multiplying the number of estimated cancer deaths at each age with a reference life expectancy; and DALYs were calculated as the sum of YLDs and YLLs. FINDINGS In 2013 there were 14.9 million incident cancer cases, 8.2 million deaths, and 196.3 million DALYs. Prostate cancer was the leading cause for cancer incidence (1.4 million) for men and breast cancer for women (1.8 million). Tracheal, bronchus, and lung (TBL) cancer was the leading cause for cancer death in men and women, with 1.6 million deaths. For men, TBL cancer was the leading cause of DALYs (24.9 million). For women, breast cancer was the leading cause of DALYs (13.1 million). Age-standardized incidence rates (ASIRs) per 100 000 and age-standardized death rates (ASDRs) per 100 000 for both sexes in 2013 were higher in developing vs developed countries for stomach cancer (ASIR, 17 vs 14; ASDR, 15 vs 11), liver cancer (ASIR, 15 vs 7; ASDR, 16 vs 7), esophageal cancer (ASIR, 9 vs 4; ASDR, 9 vs 4), cervical cancer (ASIR, 8 vs 5; ASDR, 4 vs 2), lip and oral cavity cancer (ASIR, 7 vs 6; ASDR, 2 vs 2), and nasopharyngeal cancer (ASIR, 1.5 vs 0.4; ASDR, 1.2 vs 0.3). Between 1990 and 2013, ASIRs for all cancers combined (except nonmelanoma skin cancer and Kaposi sarcoma) increased by more than 10% in 113 countries and decreased by more than 10% in 12 of 188 countries. CONCLUSIONS AND RELEVANCE Cancer poses a major threat to public health worldwide, and incidence rates have increased in most countries since 1990. The trend is a particular threat to developing nations with health systems that are ill-equipped to deal with complex and expensive cancer treatments. The annual update on the Global Burden of Cancer will provide all stakeholders with timely estimates to guide policy efforts in cancer prevention, screening, treatment, and palliation.
SummaryBackgroundThe scale-up of tobacco control, especially after the adoption of the Framework Convention for Tobacco Control, is a major public health success story. Nonetheless, smoking remains a leading risk for early death and disability worldwide, and therefore continues to require sustained political commitment. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) offers a robust platform through which global, regional, and national progress toward achieving smoking-related targets can be assessed.MethodsWe synthesised 2818 data sources with spatiotemporal Gaussian process regression and produced estimates of daily smoking prevalence by sex, age group, and year for 195 countries and territories from 1990 to 2015. We analysed 38 risk-outcome pairs to generate estimates of smoking-attributable mortality and disease burden, as measured by disability-adjusted life-years (DALYs). We then performed a cohort analysis of smoking prevalence by birth-year cohort to better understand temporal age patterns in smoking. We also did a decomposition analysis, in which we parsed out changes in all-cause smoking-attributable DALYs due to changes in population growth, population ageing, smoking prevalence, and risk-deleted DALY rates. Finally, we explored results by level of development using the Socio-demographic Index (SDI).FindingsWorldwide, the age-standardised prevalence of daily smoking was 25·0% (95% uncertainty interval [UI] 24·2–25·7) for men and 5·4% (5·1–5·7) for women, representing 28·4% (25·8–31·1) and 34·4% (29·4–38·6) reductions, respectively, since 1990. A greater percentage of countries and territories achieved significant annualised rates of decline in smoking prevalence from 1990 to 2005 than in between 2005 and 2015; however, only four countries had significant annualised increases in smoking prevalence between 2005 and 2015 (Congo [Brazzaville] and Azerbaijan for men and Kuwait and Timor-Leste for women). In 2015, 11·5% of global deaths (6·4 million [95% UI 5·7–7·0 million]) were attributable to smoking worldwide, of which 52·2% took place in four countries (China, India, the USA, and Russia). Smoking was ranked among the five leading risk factors by DALYs in 109 countries and territories in 2015, rising from 88 geographies in 1990. In terms of birth cohorts, male smoking prevalence followed similar age patterns across levels of SDI, whereas much more heterogeneity was found in age patterns for female smokers by level of development. While smoking prevalence and risk-deleted DALY rates mostly decreased by sex and SDI quintile, population growth, population ageing, or a combination of both, drove rises in overall smoking-attributable DALYs in low-SDI to middle-SDI geographies between 2005 and 2015.InterpretationThe pace of progress in reducing smoking prevalence has been heterogeneous across geographies, development status, and sex, and as highlighted by more recent trends, maintaining past rates of decline should not be taken for granted, especially in women and in low-SDI to middle-SDI...
The objective of this study was to assess the cost-utility of renal transplantation compared with dialysis. To accomplish this, a prospective cohort of pre-transplant patients were followed for up to two years after renal transplantation at three University-based Canadian hospitals. A total of 168 patients were followed for an average of 19.5 months after transplantation. Health-related quality of life was assessed using a hemodialysis questionnaire, a transplant questionnaire, the Sickness Impact Profile, and the Time Trade-Off Technique. Fully allocated costs were determined by prospectively recording resource use in all patients. A societal perspective was taken. By six months after transplantation, the mean health-related quality of life scores of almost all measures had improved compared to pre-transplantation, and they stayed improved throughout the two years of follow up. The mean time trade-off score was 0.57 pre-transplant and 0.70 two years after transplantation. The proportion of individuals employed increased from 30% before transplantation to 45% two years after transplantation. Employment prior to transplantation [relative risk (RR) = 23], graft function (RR 10) and age (RR 1.6 for every decrease in age by one decade), independently predicted employment status after transplantation. The cost of pre-transplant care ($66,782 Can 1994) and the cost of the first year after transplantation ($66,290) were similar. Transplantation was considerably less expensive during the second year after transplantation ($27,875). Over the two years, transplantation was both more effective and less costly than dialysis. This was true for all subgroups of patients examined, including patients older than 60 and diabetics. We conclude that renal transplantation was more effective and less costly than dialysis in all subgroups of patients examined.
SummaryBackgroundIn September, 2015, the UN General Assembly established the Sustainable Development Goals (SDGs). The SDGs specify 17 universal goals, 169 targets, and 230 indicators leading up to 2030. We provide an analysis of 33 health-related SDG indicators based on the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015).MethodsWe applied statistical methods to systematically compiled data to estimate the performance of 33 health-related SDG indicators for 188 countries from 1990 to 2015. We rescaled each indicator on a scale from 0 (worst observed value between 1990 and 2015) to 100 (best observed). Indices representing all 33 health-related SDG indicators (health-related SDG index), health-related SDG indicators included in the Millennium Development Goals (MDG index), and health-related indicators not included in the MDGs (non-MDG index) were computed as the geometric mean of the rescaled indicators by SDG target. We used spline regressions to examine the relations between the Socio-demographic Index (SDI, a summary measure based on average income per person, educational attainment, and total fertility rate) and each of the health-related SDG indicators and indices.FindingsIn 2015, the median health-related SDG index was 59·3 (95% uncertainty interval 56·8–61·8) and varied widely by country, ranging from 85·5 (84·2–86·5) in Iceland to 20·4 (15·4–24·9) in Central African Republic. SDI was a good predictor of the health-related SDG index (r2=0·88) and the MDG index (r2=0·92), whereas the non-MDG index had a weaker relation with SDI (r2=0·79). Between 2000 and 2015, the health-related SDG index improved by a median of 7·9 (IQR 5·0–10·4), and gains on the MDG index (a median change of 10·0 [6·7–13·1]) exceeded that of the non-MDG index (a median change of 5·5 [2·1–8·9]). Since 2000, pronounced progress occurred for indicators such as met need with modern contraception, under-5 mortality, and neonatal mortality, as well as the indicator for universal health coverage tracer interventions. Moderate improvements were found for indicators such as HIV and tuberculosis incidence, minimal changes for hepatitis B incidence took place, and childhood overweight considerably worsened.InterpretationGBD provides an independent, comparable avenue for monitoring progress towards the health-related SDGs. Our analysis not only highlights the importance of income, education, and fertility as drivers of health improvement but also emphasises that investments in these areas alone will not be sufficient. Although considerable progress on the health-related MDG indicators has been made, these gains will need to be sustained and, in many cases, accelerated to achieve the ambitious SDG targets. The minimal improvement in or worsening of health-related indicators beyond the MDGs highlight the need for additional resources to effectively address the expanded scope of the health-related SDGs.FundingBill & Melinda Gates Foundation.
Background and Purpose-Previous estimates of the number and prevalence of individuals experiencing the effects of stroke in Canada are out of date and exclude critical population groups. It is essential to have complete data that report on stroke disability for monitoring and planning purposes. The objective was to provide an updated estimate of the number of individuals experiencing the effects of stroke in Canada (and its regions), trending since 2000 and forecasted prevalence to 2038. Methods-The prevalence, trends, and projected number of individuals experiencing the effects of stroke were estimated using region-specific survey data and adjusted to account for children aged <12 years and individuals living in homes for the aged. Results-In 2013, we estimate that there were 405 000 individuals experiencing the effects of stroke in Canada, yielding a prevalence of 1.15%. This value is expected to increase to between 654 000 and 726 000 by 2038. Trends in stroke data between 2000 and 2012 suggest a nonsignificant decrease in stroke prevalence, but a substantial and rising increase in the number of individuals experiencing the effects of stroke. Stroke prevalence varied considerably between regions. Conclusions-Previous estimates of stroke prevalence have underestimated the true number of individuals experiencing the effects of stroke in Canada. Furthermore, the projected increases that will result from population growth and demographic changes highlight the importance of maintaining up-to-date estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.