Hyperglycemia is associated with increased susceptibility to atherothrombotic stimuli. The glycocalyx, a layer of proteoglycans covering the endothelium, is involved in the protective capacity of the vessel wall. We therefore evaluated whether hyperglycemia affects the glycocalyx, thereby increasing vascular vulnerability. The systemic glycocalyx volume was estimated by comparing the distribution volume of a glycocalyx permeable tracer (dextran 40) with that of a glycocalyx impermeable tracer (labeled erythrocytes) in 10 healthy male subjects. Measurements were performed in random order on five occasions: two control measurements, two measurements during normoinsulinemic hyperglycemia with or without N-acetylcysteine (NAC) infusion, and one during mannitol infusion. Glycocalyx measurements were reproducible (1.7 ؎ 0.2 vs. 1.7 ؎ 0.3 l). Hyperglycemia reduced glycocalyx volume (to 0.8 ؎ 0.2 l; P < 0.05), and NAC was able to prevent the reduction (1.4 ؎ 0.2 l). Mannitol infusion had no effect on glycocalyx volume (1.6 ؎ 0.1 l). Hyperglycemia resulted in endothelial dysfunction, increased plasma hyaluronan levels (from 70 ؎ 6 to 112 ؎ 16 ng/ml; P < 0.05) and coagulation activation (prothrombin activation fragment 1 ؉ 2: from 0.4 ؎ 0.1 to 1.1 ؎ 0.2 nmol/l; D-dimer: from 0.27 ؎ 0.1 to 0.55 ؎ 0.2 g/l; P < 0.05). Taken together, these data indicate a potential role for glycocalyx perturbation in mediating vascular dysfunction during hyperglycemia. Diabetes 55:480 -486, 2006 P atients with diabetes have increased vascular vulnerability to atherogenic insults, leading to accelerated atherogenesis. Although atherogenesis is in part due to the increased prevalence of traditional cardiovascular risk factors, these factors cannot fully explain the propensity toward vascular complications in diabetic patients (1). Hyperglycemia itself has been shown to induce a wide array of downstream effects that adversely affect the protective capacity of the vessel wall (2). Hyperglycemia has been associated with enhanced endothelial permeability, increased leukocyte-endothelium adhesion, and impaired nitric oxide (NO) bioavailability (3-5). Despite clear progress in understanding the underlying pathophysiological mechanisms contributing to this vascular dysfunction, it has proven difficult to unravel a final common pathway for the increased vascular vulnerability under hyperglycemic conditions (6).The glycocalyx covers the endothelium and consists of endothelial cell-derived proteoglycans, glycoproteins, and adsorbed plasma proteins. This layer has been shown to orchestrate vascular homeostasis (7). Its thickness (up to 1 m) may explain its potent antiadhesive effects on leukocytes and platelets (8,9). Hyaluronan glycosaminoglycans, one of the major constituents of the glycocalyx, are crucial for maintaining endothelial barrier properties for plasma macromolecules (10). The glycocalyx also serves as a mechanosensor of shear stress, mediating shear-induced release of NO by endothelial cells (11-13). In fact, selective perturbation of the g...
Chronic hyperglycemia underlies microvascular complications in patients with type 1 diabetes. The mechanisms leading to these vascular complications are not fully understood. Recently, we observed that acute hyperglycemia results in endothelial glycocalyx damage. To establish whether glycocalyx is associated with microvascular damage, we performed glycocalyx perturbation volume measurements in type 1 diabetic patients with microalbuminuria (DM1-MA group; n ؍ 7), without microalbuminuria (DM1-NA group; n ؍ 7), and in age-matched control subjects (CON; n ؍ 7). Systemic glycocalyx volume was determined comparing intravascular distribution volume of a glycocalyxpermeable tracer (dextran 40) to that of a glycocalyximpermeable tracer (labeled erythrocytes). Sublingual capillaries were visualized using orthogonal polarization spectral microscopy to estimate microvascular glycocalyx. Patients and control subjects were matched according to age and BMI. Glycocalyx volume decreased in a stepwise fashion from CON, DM1-NA, and finally DM1-MA subjects (1.5 ؎ 0.1, 0.8 ؎ 0.4, and 0.2 ؎ 0.1 l, respectively, P < 0.05). Microvascular glycocalyx in sublingual capillaries was also decreased in type 1 diabetes versus the control group (0.5 ؎ 0.1 vs. 0.9 ؎ 0.1 m, P < 0.05). Plasma hyaluronan, a principal glycocalyx constituent, and hyaluronidase were increased in type 1 diabetes. In conclusion, type 1 diabetic patients are characterized by endothelial glycocalyx damage, the severity of which is increased in presence of microalbuminuria.
Aims/hypothesisEndothelial glycocalyx perturbation contributes to increased vascular permeability. In the present study we set out to evaluate whether: (1) glycocalyx is perturbed in individuals with type 2 diabetes mellitus, and (2) oral glycocalyx precursor treatment improves glycocalyx properties.MethodsMale participants with type 2 diabetes (n = 10) and controls (n = 10) were evaluated before and after 2 months of sulodexide administration (200 mg/day). The glycocalyx dimension was estimated in two different vascular beds using sidestream dark field imaging and combined fluorescein/indocyanine green angiography for sublingual and retinal vessels, respectively. Transcapillary escape rate of albumin (TERalb) and hyaluronan catabolism were assessed as measures of vascular permeability.ResultsBoth sublingual dimensions (0.64 [0.57–0.75] μm vs 0.78 [0.71–0.85] μm, p < 0.05, medians [interquartile range]) and retinal glycocalyx dimensions (5.38 [4.88–6.59] μm vs 8.89 [4.74–11.84] μm, p < 0.05) were reduced in the type 2 diabetes group compared with the controls whereas TERalb was increased (5.6 ± 2.3% vs 3.7 ± 1.7% in the controls, p < 0.05). In line with these findings, markers of hyaluronan catabolism were increased with diabetes (hyaluronan 137 ± 29 vs 81 ± 8 ng/ml and hyaluronidase 78 ± 4 vs 67 ± 2 U/ml, both p < 0.05). Sulodexide increased both the sublingual and retinal glycocalyx dimensions in participants with diabetes (to 0.93 [0.83–0.99] μm and to 5.88 [5.33–6.26] μm, respectively, p < 0.05). In line, a trend towards TERalb normalisation (to 4.0 ± 2.3%) and decreases in plasma hyaluronidase (to 72 ± 2 U/ml, p < 0.05) were observed in the diabetes group.Conclusion/interpretationType 2 diabetes is associated with glycocalyx perturbation and increased vascular permeability, which are partially restored following sulodexide administration. Further studies are warranted to determine whether long-term treatment with sulodexide has a beneficial effect on cardiovascular risk.Trial registrationwww.trialregister.nl NTR780/http://isrctn.org ISRCTN82695186FundingAn unrestricted Novartis Foundation for Cardiovascular Excellence grant (2006) to M. Nieuwdorp/E. S. G. Stroes, Dutch Heart Foundation (grant number 2005T037)
The endothelial glycocalyx is increasingly considered as an intravascular compartment that protects the vessel wall against pathogenic insults. The purpose of this study was to translate an established experimental method of estimating capillary glycocalyx dimension into a clinically useful tool and to assess its reproducibility in humans. We first evaluated by intravital microscopy the relation between the distance between the endothelium and erythrocytes, as a measure of glycocalyx thickness, and the transient widening of the erythrocyte column on glycocalyx compression by passing leukocytes in hamster cremaster muscle capillaries. We subsequently assessed sublingual microvascular glycocalyx thickness in 24 healthy men using orthogonal polarization spectral imaging. In parallel, systemic glycocalyx volume (using a previously published tracer dilution technique) as well as cardiovascular risk profiles were assessed. Estimates of microvascular glycocalyx dimension from the transient erythrocyte widening correlated well with the size of the erythrocyte-endothelium gap (r = 0.63). Measurements in humans were reproducible (0.58 +/- 0.16 and 0.53 +/- 0.15 microm, coefficient of variance 15 +/- 5%). In univariate analysis, microvascular glycocalyx thickness significantly correlated with systemic glycocalyx volume (r = 0.45), fasting plasma glucose (r = 0.43), and high-density lipoprotein-cholesterol (r = 0.40) and correlated negatively with low-density lipoprotein-cholesterol (r = -0.41) as well as body mass index (r = -0.45) (all P < 0.05). In conclusion, the dimension of the endothelial glycocalyx can be measured reproducibly in humans and is related to cardiovascular risk factors. It remains to be tested whether glycocalyx dimension can be used as an early marker of vascular damage and whether therapies aimed at glycocalyx repair can protect the vasculature against pathogenic challenges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.