Human respiratory syncytial virus (RSV) is a major cause of severe respiratory disease in (premature) newborns and causes respiratory illness in the elderly. Different monoclonal antibody (MAb) and vaccine candidates are in development worldwide and will hopefully become available within the near future. To implement such RSV vaccines, adequate decisions about immunization schedules and the different target group(s) need to be made, for which the assessment of antibody levels against RSV is essential. To survey RSV antigen-specific antibody levels, we developed a serological multiplex immunoassay (MIA) that determines and distinguishes antibodies against the five RSV glycoproteins postfusion F, prefusion F, Ga, Gb, and N simultaneously. The standardized RSV pentaplex MIA is sensitive, highly reproducible, and specific for the five RSV proteins. The preservation of the conformational structure of the immunodominant site Ø of prefusion F after conjugation to the beads has been confirmed. Importantly, good correlation is obtained between the microneutralization test and the MIA for all five proteins, resulting in an arbitrarily chosen cutoff value of prefusion F antibody levels for seropositivity in the microneutralization assay. The wide dynamic range requiring only two serum sample dilutions makes the RSV-MIA a high-throughput assay very suitable for (large-scale) serosurveillance and vaccine clinical studies. IMPORTANCE In view of vaccine and monoclonal development to reduce hospitalization and death due to lower respiratory tract infection caused by RSV, assessment of antibody levels against RSV is essential. This newly developed multiplex immunoassay is able to measure antibody levels against five RSV proteins simultaneously. This can provide valuable insight into the dynamics of (maternal) antibody levels and RSV infection in infants and toddlers during the first few years of life, when primary RSV infection occurs.
More than 170 types of human papilloma viruses (HPV) exist with many causing proliferative diseases linked to malignancy in indications such as cervical cancer and head and neck squamous cell carcinoma. Characterization of antibody levels toward HPV serology is challenging due to complex biology of oncoproteins, pre-existing titers to multiple HPV types, cross-reactivity, and low affinity, polyclonal responses. Using multiplex technology from MSD, we have developed an assay that simultaneously characterizes antibodies against E6 and E7 oncoproteins of HPV16 and 18, the primary drivers of HPV-associated oncogenesis. We fusion tagged our E6 and E7 proteins with MBP via two-step purification, spot-printed an optimized concentration of protein into wells of MSD 96-well plates, and assayed various cynomolgus monkey, human and HPV+ cervical cancer patient serum to validate the assay. The dynamic range of the assay covered 4-orders of magnitude and antibodies were detected in serum at a dilution up to 100,000-fold. The assay was very precise (n = 5 assay runs) with median CV of human serum samples~5.3% and inter-run variability of 11.4%. The multiplex serology method has strong cross-reactivity between E6 oncoproteins from human serum samples as HPV18 E6 antigens neutralized 5 of 6 serum samples as strongly as HPV16 E6. Moderate concordance (Spearman's Rank = 0.775) was found between antibody responses against HPV16 E7 in the multiplex assay compared to standard ELISA serology methods. These results demonstrate the development of a high-throughput, multiplex assay that requires lower sample quantity input with greater dynamic range to detect type-specific anti-HPV concentrations to E6 and E7 oncoproteins of HPV16 and 18.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.