to be used for computations of large systems. In addition, the report includes the description of a computational machinery for nonlinear optical spectroscopy through an interface to the QM/MM package Cobramm. Further, a module to run molecular dynamics simulations is added and two surface hopping algorithms are included to enable nonadiabatic calculations. Finally, we report on the subject of improvements with respects to alternative file options and parallelization.
A procedure for a detailed analysis of excited states in systems of interacting chromophores is proposed. By considering the one-electron transition density matrix, a wealth of information is recovered that may be missed by manually analyzing the wave function. Not only are the position and spatial extent given, but insight into the intrinsic structure of the exciton is readily obtained as well. For example, the method can differentiate between excitonic and charge resonance interactions even in completely symmetric systems. Four examples are considered to highlight the utility of the approach: interactions between the nπ* states in a formaldehyde dimer, excimer formation in the naphthalene dimer, stacking interaction in an adenine dimer, and the excitonic band structure in a conjugated phenylenevinylene oligomer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.