The evolution of small aerosol particles accompanying the combustion of straw for energy production is investigated. A sampling equipment specially designed for field measurements is described and characterized. The aerosol is studied by low-pressure cascade impactor and scanning mobility particle sizer, the particle morphology by transmission electron microscopy, and the chemical composition by energy dispersive x-ray analysis. The combustion gas contains 3-500 m g /~m 3 of submicron particles with a mean diameter of approximately 0.3 pm. The particles consist of almost pure potassium chloride and sulphate. The formation mechanism is analyzed by a theoretical simulation of the chemical reactions and the aerosol change during cooling of the flue gas. It is concluded that some sulphation of KC1 occurs in the gas phase although the sulphate concentration is much lower than predicted by an equilibrium assumption. The theoretical simulation proves that the fine mode particles can be formed by homogeneous nucleation of either KC1 or K,S04 as the first step and further growth occurs by coagulation and diffusive condensation of both KC1 and K4S04 on existing particles. AEROSOL
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.