Random number generators are used in areas such as encryption and system modeling, where some of these exhibit fractal behaviors. For this reason, it is interesting to make use of the memristor characteristics for the random number generation. Accordingly, the objective of this article is to evaluate the performance of a chaotic memristive system as a random number generator with fractal behavior and long-range dependence. To achieve the above, modeling memristor and its corresponding chaotic systems is performed, from which a random number generator is constructed. Subsequently, the Hurst parameter for the detection of long-range dependence is estimated and a fractal analysis of the synthesized data is performed. Finally, a comparison between the model proposed in the research and the β-MWM algorithm is made. The results obtained show that the data synthesized from the proposed generator have a variable Hurst parameter and both monofractal and multifractal behavior. The main contribution of this research is the proposal of a new model for the synthesis of traces with long-range dependence and fractal behavior based on the non-linearity of the memristor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.