Clonogenic assay or colony formation assay is an in vitro cell survival assay based on the ability of a single cell to grow into a colony. The colony is defined to consist of at least 50 cells. The assay essentially tests every cell in the population for its ability to undergo "unlimited" division. Clonogenic assay is the method of choice to determine cell reproductive death after treatment with ionizing radiation, but can also be used to determine the effectiveness of other cytotoxic agents. Only a fraction of seeded cells retains the capacity to produce colonies. Before or after treatment, cells are seeded out in appropriate dilutions to form colonies in 1-3 weeks. Colonies are fixed with glutaraldehyde (6.0% v/v), stained with crystal violet (0.5% w/v) and counted using a stereomicroscope. A method for the analysis of radiation dose-survival curves is included.
Despite the presence of mutations in APC or beta-catenin, which are believed to activate the Wnt signalling cascade constitutively, most colorectal cancers show cellular heterogeneity when beta-catenin localization is analysed, indicating a more complex regulation of Wnt signalling. We explored this heterogeneity with a Wnt reporter construct and observed that high Wnt activity functionally designates the colon cancer stem cell (CSC) population. In adenocarcinomas, high activity of the Wnt pathway is observed preferentially in tumour cells located close to stromal myofibroblasts, indicating that Wnt activity and cancer stemness may be regulated by extrinsic cues. In agreement with this notion, myofibroblast-secreted factors, specifically hepatocyte growth factor, activate beta-catenin-dependent transcription and subsequently CSC clonogenicity. More significantly, myofibroblast-secreted factors also restore the CSC phenotype in more differentiated tumour cells both in vitro and in vivo. We therefore propose that stemness of colon cancer cells is in part orchestrated by the microenvironment and is a much more dynamic quality than previously expected that can be defined by high Wnt activity.
Colon cancer is a clinically diverse disease. This heterogeneity makes it difficult to determine which patients will benefit most from adjuvant therapy and impedes the development of new targeted agents. More insight into the biological diversity of colon cancers, especially in relation to clinical features, is therefore needed. We demonstrate, using an unsupervised classification strategy involving over 1,100 individuals with colon cancer, that three main molecularly distinct subtypes can be recognized. Two subtypes have been previously identified and are well characterized (chromosomal-instable and microsatellite-instable cancers). The third subtype is largely microsatellite stable and contains relatively more CpG island methylator phenotype-positive carcinomas but cannot be identified on the basis of characteristic mutations. We provide evidence that this subtype relates to sessile-serrated adenomas, which show highly similar gene expression profiles, including upregulation of genes involved in matrix remodeling and epithelial-mesenchymal transition. The identification of this subtype is crucial, as it has a very unfavorable prognosis and, moreover, is refractory to epidermal growth factor receptor-targeted therapy.
Defective homologous recombination (HR) DNA repair imposed by BRCA1 or BRCA2 deficiency sensitizes cells to poly (ADP-ribose) polymerase (PARP)-1 inhibition and is currently exploited in clinical treatment of HR-deficient tumors. Here we show that mild hyperthermia (41-42.5°C) induces degradation of BRCA2 and inhibits HR. We demonstrate that hyperthermia can be used to sensitize innately HR-proficient tumor cells to PARP-1 inhibitors and that this effect can be enhanced by heat shock protein inhibition. Our results, obtained from cell lines and in vivo tumor models, enable the design of unique therapeutic strategies involving localized ondemand induction of HR deficiency, an approach that we term induced synthetic lethality.anti-cancer treatment | RAD51 | double-strand break M any anti-cancer therapies are based on cytotoxicity of DNA double strand breaks (DSBs) induced by ionizing radiation or, indirectly, by chemical agents. However, efficient DSB repair mechanisms protect cells from the genotoxic effects of DSBs, thereby reducing the effectiveness of the therapies. Two major pathways are involved in DSB repair in mammalian cells: homologous recombination (HR) and nonhomologous end joining (NHEJ). HR uses intact homologous DNA sequences, usually the sister chromatid in postreplicative chromatin, to faithfully restore DNA breaks (1), whereas NHEJ operates throughout the entire cell cycle and does not require a DNA template (2). Agents inhibiting DNA repair processes potentiate the cytotoxicity of DSBs in cancer therapy (3). Elevated temperature is one such agent that, via unclear mechanisms, interferes with multiple pathways of DNA repair (4-6) and is clinically applied (7). ResultsTo investigate if HR, among other processes and DSB repair pathways, is influenced by elevated temperature, we used an isogenic set of mouse embryonic stem (ES) cells that are either HR proficient (wild-type) or HR deficient (Rad54 −/− ) due to the disruption of the Rad54 gene, which is important for HR activity (1). We compared radiosensitization of these cells by incubating them at 37°C or 41°C before irradiation. For this and subsequent experiments we chose temperatures below 43°C, because they are relevant in clinical practice (8). Interestingly, we observed that wild-type but not Rad54 −/− cells were radiosensitized by preincubation at 41°C compared with cells incubated at 37°C (Fig. 1A). Similarly, HeLa cells, in which the important HR factors XRCC3 or BRCA2 were down-regulated using siRNA, were refractory to further temperature-mediated radiosensitization (Fig. 1B and Fig. S1). These results suggest that elevated temperature inactivates HR. To directly measure the effect of temperature on HR, we quantitated HR-mediated gene targeting in ES cells (9) and found that the efficiency of gene targeting was significantly reduced by preincubation at 41°C compared with 37°C (Fig. 1C). Similarly, preincubation at 41°C reduced the frequency of spontaneous and mitomycin C-induced sister chromatid exchanges in SW-1573 cells (Fig. S2A), w...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.