The importance of the ATP-dependent transporter P-glycoprotein, which is expressed in the brush border membrane of enterocytes and in other tissues with excretory function, for overall drug disposition is well recognized. For example, induction of intestinal P-glycoprotein by rifampin appears to be the underlying mechanism of decreased plasma concentrations of P-glycoprotein substrates such as digoxin with concomitant rifampin therapy. The contribution of transporter proteins other than P-glycoprotein to drug interactions in humans has not been elucidated. Therefore, we tested in this study the hypothesis whether the conjugate export pump MRP2 (cMOAT), which is another member of the ABC transporter family, is inducible by rifampin in humans. Duodenal biopsies were obtained from 16 healthy subjects before and after nine days of oral treatment with 600 mg rifampin/day. MRP2 mRNA and protein were determined by reverse transcription-polymerase chain reaction and immunohistochemistry. Rifampin induced duodenal MRP2 mRNA in 14 out of 16 individuals. Moreover, MRP2 protein, which was expressed in the apical membrane of enterocytes, was significantly induced by rifampin in 10 out of 16 subjects. In summary, rifampin induces MRP2 mRNA and protein in human duodenum. Increased elimination of MRP2 substrates (eg, drug conjugates) into the lumen of the gastrointestinal tract during treatment with rifampin could be a new mechanism of drug interactions.
The human 190 kDa multidrug resistance protein, MRP1, is a polytopic membrane glycoprotein that confers resistance to a wide range of chemotherapeutic agents. It also transports structurally diverse conjugated organic anions, as well as certain unconjugated and conjugated compounds, in a reduced glutathione-stimulated manner. In this study, we characterized a low-frequency (<1%) naturally occurring mutation in MRP1 expected to cause the substitution of a conserved arginine with serine at position 433 in a predicted cytoplasmic loop of the protein. Transport experiments with membrane vesicles prepared from transfected human embryonic kidney cells and HeLa cells revealed a two-fold reduction in the ATP-dependent transport of the MRP1 substrates, leukotriene C4 (LTC4) and oestrone sulphate. Kinetic analysis showed that this reduction was due to a decrease in Vmax for both substrates but Km was unchanged. In contrast, 17beta-oestradiol-17beta-(D-glucuronide) transport by the Arg433Ser mutant MRP1 was similar to that by wild-type MRP1. Fluorescence confocal microscopy showed that the mutant MRP1 was routed correctly to the plasma membrane. In contrast to the reduced LTC4 and oestrone sulphate transport, stably transfected HeLa cells expressing Arg433Ser mutant MRP1 were 2.1-fold more resistant to doxorubicin than cells expressing wild-type MRP1, while resistance to VP-16 and vincristine was unchanged. These results provide the first example of a naturally occurring mutation predicted to result in an amino acid substitution in a cytoplasmic region of MRP1 that shows an altered phenotype with respect to both conjugated organic anion transport and drug resistance.
Prevailing knowledge gaps in linking specific molecular changes to apical outcomes and methodological uncertainties in the generation, storage, processing, and interpretation of ‘omics data limit the application of ‘omics technologies in regulatory toxicology. Against this background, the European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) convened a workshop Applying ‘omics technologies in chemicals risk assessment that is reported herein. Ahead of the workshop, multi-expert teams drafted frameworks on best practices for (i) a Good-Laboratory Practice-like context for collecting, storing and curating ‘omics data; (ii) the processing of ‘omics data; and (iii) weight-of-evidence approaches for integrating ‘omics data. The workshop participants confirmed the relevance of these Frameworks to facilitate the regulatory applicability and use of ‘omics data, and the workshop discussions provided input for their further elaboration. Additionally, the key objective (iv) to establish approaches to connect ‘omics perturbations to phenotypic alterations was addressed. Generally, it was considered promising to strive to link gene expression changes and pathway perturbations to the phenotype by mapping them to specific adverse outcome pathways. While further work is necessary before gene expression changes can be used to establish safe levels of substance exposure, the ECETOC workshop provided important incentives towards achieving this goal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.