Fibrillar protein deposits (amyloid) in the pancreatic islets of Langerhans are thought to be involved in death of the insulinproducing islet  cells in type 2 diabetes mellitus. It has been suggested that the mechanism of this  cell death involves membrane disruption by human islet amyloid polypeptide (hIAPP), the major constituent of islet amyloid. However, the molecular mechanism of hIAPP-induced membrane disruption is not known. Here, we propose a hypothesis that growth of hIAPP fibrils at the membrane causes membrane damage. We studied the kinetics of hIAPP-induced membrane damage in relation to hIAPP fibril growth and found that the kinetic profile of hIAPP-induced membrane damage is characterized by a lag phase and a sigmoidal transition, which matches the kinetic profile of hIAPP fibril growth. The observation that seeding accelerates membrane damage supports the hypothesis. In addition, variables that are well known to affect hIAPP fibril formation, i.e., the presence of a fibril formation inhibitor, hIAPP concentration, and lipid composition, were found to have the same effect on hIAPP-induced membrane damage. Furthermore, electron microscopy analysis showed that hIAPP fibrils line the surface of distorted phospholipid vesicles, in agreement with the notion that hIAPP fibril growth at the membrane and membrane damage are physically connected. Together, these observations point toward a mechanism in which growth of hIAPP fibrils, rather than a particular hIAPP species, is responsible for the observed membrane damage. This hypothesis provides an additional mechanism next to the previously proposed role of oligomers as the main cytotoxic species of amyloidogenic proteins.amylin ͉ amyloid cytotoxicity ͉ large unilamellar vesicles ͉ protein-membrane interaction ͉ type 2 diabetes mellitus T ype 2 diabetes mellitus (DM2) is characterized histopathologically by the presence of fibrillar amyloid deposits in the pancreatic islets of Langerhans. Amyloid cytotoxicity is thought to be an early mechanism involved in death of insulin-producing islet  cells in DM2 (1). The main component of islet amyloid, and the actual fibril-forming molecule, is a 37-amino acid peptide called human islet amyloid polypeptide (hIAPP) or amylin, which is produced together with insulin in the pancreatic islet -cells. It is thought that  cells of DM2 patients are somehow killed through hIAPP-induced damage of the  cell membrane (2). However, our knowledge of the mechanism of hIAPP-induced membrane damage is extremely sparse. It is not known how cytotoxic hIAPP species interact with cellular membranes and induce cell death. Furthermore, it is not established whether cytotoxic hIAPP species are formed before contacting the membrane or whether a membrane environment is in fact required for the formation of cytotoxic hIAPP species.The prevailing view is that membrane damage and concomitant  cell death are caused by cytotoxic hIAPP oligomers (2-9). There are indications that these oligomers form ion channels (2, 3), as has been suggeste...
The aim of this study was to gain insight into the structural consequences of hydrophobic mismatch for membrane proteins in lipid bilayers that contain cholesterol. For this purpose, tryptophanflanked peptides, designed to mimic transmembrane segments of membrane proteins, were incorporated in model membranes of unsaturated phosphatidylcholine bilayers of varying thickness and containing varying amounts of cholesterol. Analysis of the lipid organization by 31 P NMR and cryo-TEM demonstrated the formation of an isotropic phase, most likely representing a cubic phase, which occurred exclusively in mixtures containing lipids with relatively long acyl chains. Formation of this phase was inhibited by incorporation of lysophosphatidylcholine. These results indicate that the isotropic phase is formed as a consequence of negative hydrophobic mismatch and that its formation is related to a negative membrane curvature. When either peptide or cholesterol was omitted from the mixture, isotropic-phase formation did not occur, not even when the concentrations of these compounds were significantly increased. This suggests that formation of the isotropic phase is the result of a synergistic effect between the peptides and cholesterol. Interestingly, isotropic-phase formation was not observed when the tryptophans in the peptide were replaced by either lysines or histidines. We propose a model for the mechanism of this synergistic effect, in which its dependence on the flanking residues is explained by preferential interactions between cholesterol and tryptophan residues.
Polyoxometalates or POMs, a class of inorganic transition metal-oxide based clusters, have gained significant interest owing to their catalytic, magnetic, and material science applications. All such applications require high surface area POM based materials. However, chemically synthesized POMs are still at most in the range of a few nanometers, with their size and morphology being difficult to control. Hence, there is an immediate need to develop design principles that allow easy control of POM morphology and size on mesoscopic (50-500 nm) length scales. Here, we report a design strategy to meet this need. Our method reported here avoids a complex chemical labyrinth by using a prefabricated cationic 1,2-dioleol-3-trimethylammonium-propane (DOTAP) vesicle as a scaffold/structure directing agent and gluing simple anionic heptamolybdates by electrostatic interaction and hydrogen bonds to form large POM spheres. By this method, complexity in the resulting structure can be deliberately induced either via the scaffold or via the oxometalate. The high degree of control in the matter of the size and morphology of the resulting POM superstructures renders this method attractive from a synthetic standpoint.
We show that polyoxometalate (ammonium phosphomolybdate) Keggin in aqueous dispersions upon sonication spontaneously transforms into micrometer-sized, peapod-shaped structures. The formation of these peapods is preceded by the generation of spherical aggregates. The particles have been characterized experimentally by time-resolved dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning TEM with a high-angle annular dark field detector (STEM-HAADF) for energy-dispersive X-ray (STEM/EDX) elemental analyses. A pathway for the phenomenon is proposed.
The polyoxometalates or POMs (clusters comprising at least two metal and many oxygen atoms) have recently gained significant interest owing to their versatile architecture and especially their catalytic activities. Due to their high catalytic activity but low surface area, there is always a demand for making high surface area POMs. This work demonstrates the attachment of the anionic (Mo72Fe30) POMs to gibbsite nanoplatelets with a residual positive charge to form large surface area composites. The resulting composite reported here has been characterized using cryo-TEM imaging, EDX/STEM (elemental) analysis, ATR-IR spectroscopy, SAXS, electrophoretic mobility determination and XRD. The composite reported here could find application in catalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.