In a continuing screening and intervention programme in Malmó, elevated serum-gamma-glutamyltransferase (GGT) values were used for selection of heavy drinkers. The study population consisted of 585 individuals born 1926-1933 with two consecutive GGT values in the upper decile of the GGT distribution, randomly allocated either to an intervention group of to a control group. The subjects in the intervention group were further investigated and 75% of them were judged to have elevated GGT values caused by alcohol consumption. These individuals were repeatedly encouraged to lower their overall alcohol consumption and GGT measurements were used as biofeedback method in the treatment program. The controls were informed by letter to be restrictive with their alcohol consumption and that they should receive new invitations for measurements of their liver enzymes after 2, 4, and 6 years. The intervention and control groups were well matched and followed over a 2-6-year period. Two and 4 years after the screening investigation, the GGT values in both groups were significantly decreased. There were differences, however, between the two groups with regard to sick absenteeism, hospitalization, and mortality. A significant reduction was found in sick absence during 4 years by 80%, in hospital days during 5 years by 60%, and in mortality during 6 years by 50% in the intervention group compared with the control group. Thus, the intervention program was effective in preventing medico-social consequences of heavy drinking.
Artificial neural networks can be used to improve automated ECG interpretation for acute myocardial infarction. The networks may be useful as decision support even for the experienced ECG readers.
BackgroundThe time course of infarct evolution, i.e. how fast myocardial infarction (MI) develops during coronary artery occlusion, is well known for several species, whereas no direct evidence exists on the evolution of MI size normalized to myocardium at risk (MaR) in man. Despite the lack of direct evidence, current literature often refers to the "golden hour" as the time during which myocardial salvage can be accomplished by reperfusion therapy. Therefore, the aim of the present study was to investigate how duration of myocardial ischemia affects infarct evolution in man in relation to previous animal data. Consecutive patients with clinical signs of acute myocardial ischemia were screened and considered for enrollment. Particular care was taken to assure uniformity of the patients enrolled with regard to old MI, success of revascularization, collateral flow, release of biochemical markers prior to intervention etc. Sixteen patients were ultimately included in the study. Myocardium at risk was assessed acutely by acute Myocardial Perfusion Single photon emission computed tomography (MPS) and by T2 imaging (T2-STIR) cardiovascular magnetic resonance (CMR) after one week in 10 of the 16 patients. Infarct size was measured by late gadolinium enhancement (LGE) at one week.ResultsThe time to reach 50% MI of the MaR (T50) was significantly shorter in pigs (37 min), rats (41 min) and dogs (181 min) compared to humans (288 min). There was no significant difference in T50 when using MPS compared to T2-STIR (p = 0.53) for assessment of MaR (288 ± 23 min vs 310 ± 22 min, T50 ± standard error). The transmural extent of MI increased progressively as the duration of ischemia increased (R2 = 0.56, p < 0.001).ConclusionThis is the first study to provide direct evidence of the time course of acute myocardial infarct evolution in relation to MaR in man with first-time MI. Infarct evolution in man is significantly slower than in pigs, rats and dogs. Furthermore, infarct evolution assessments in man are similar when using MPS acutely and T2-STIR one week later for determination of MaR, which significantly facilitates future clinical trials of cardioprotective therapies in acute coronary syndrome by the use of CMR.
IntroductionAssessing left ventricular (LV) systolic function in a rapid and reliable way can be challenging in the critically ill patient. The purpose of this study was to evaluate the feasibility and reliability of, as well as the association between, commonly used LV systolic parameters, by using serial transthoracic echocardiography (TTE).MethodsFifty patients with shock and mechanical ventilation were included. TTE examinations were performed daily for a total of 7 days. Methods used to assess LV systolic function were visually estimated, "eyeball" ejection fraction (EBEF), the Simpson single-plane method, mean atrioventricular plane displacement (AVPDm), septal tissue velocity imaging (TDIs), and velocity time integral in the left ventricular outflow tract (VTI).ResultsEBEF, AVPDm, TDIs, VTI, and the Simpson were obtained in 100%, 100%, 99%, 95% and 93%, respectively, of all possible examinations. The correlations between the Simpson and EBEF showed r values for all 7 days ranging from 0.79 to 0.95 (P < 0.01). the Simpson correlations with the other LV parameters showed substantial variation over time, with the poorest results seen for TDIs and AVPDm. The repeatability was best for VTI (interobserver coefficient of variation (CV) 4.8%, and intraobserver CV, 3.1%), and AVPDm (5.3% and 4.4%, respectively), and worst for the Simpson method (8.2% and 10.6%, respectively).ConclusionsEBEF and AVPDm provided the best, and Simpson, the worst feasibility when assessing LV systolic function in a population of mechanically ventilated, hemodynamically unstable patients. Additionally, the Simpson showed the poorest repeatability. We suggest that EBEF can be used instead of single-plane Simpson when assessing LV ejection fraction in this category of patients. TDIs and AVPDm, as markers of longitudinal function of the LV, are not interchangeable with LV ejection fraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.