A model to simulate effects of microgravity on skeletal muscle mass and function in humans has been developed. Unilateral lower limb unloading that allowed ankle, knee, and hip joint mobility was conducted in six healthy men by suspending one lower limb and having the subjects walk on crutches. They performed maximal unilateral concentric or eccentric quadriceps actions at different angular velocities before and after 4 wk of suspension and after 4 days and after 7 wk of uncontrolled recovery. Peak torque (PT) and angle-specific torque (AST) were measured. Muscle cross-sectional area (CSA) and radiological density (RD) of the thigh were assessed by means of computerized tomography. Concentric and eccentric PT and AST across speeds decreased (P less than 0.05) by 22 and 16%, respectively, in response to unloading. At 4 days of recovery PT (-11%) and AST (-7%) were still lower (P less than 0.05) than before. Muscle CSA and RD decreased (P less than 0.05) by 7 and 6%, respectively. After 7 wk of recovery PT, AST, CSA, and RD had returned to normal. The control limb showed no changes over the experimental period except for a 6% decrease (P less than 0.05) in RD. It is suggested that this human model of unloading could serve to simulate effects of microgravity on skeletal muscle mass and function because reductions in muscle mass and strength were of similar magnitude to those produced by bed rest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.