The performance of a fluorescence detector in capillary electrophoresis (CE) using a light-emitting diode (LED) as excitation source is reported. An ultraviolet LED pulsed at a repetition rate of 500 Hz, combined with a time-discrimination and averaging acquisition system, was used. Limits of detection of 3 and 18 fmoles (at a signal-to-noise ratio equal to 3) were achieved for fluorescamine-derivatized bradykinin and lysine, respectively. This system exhibited a linear response for a concentration range between 54 and 417 microM for derivatized lysine, and between 1.81 and 23.58 microM for derivatized bradykinin. This detection system showed to be very convenient for routine analytical applications.
Experiments are described in which low-intensity laser pulses of zero area [∫−∞∞E(z,t) dt=0] are propagated through a degenerate resonantly absorbing medium with greatly reduced absorption. These pulses are constructed either electro-optically or by allowing a non-zero-degree pulse to evolve toward zero area by means of a resonant absorption and reradiation process. We observe the transmission of as much as 65% of the energy of such pulses through a resonant absorber which attenuates the same cw laser by e−αL, with αL ≈ 20.
A brief overview of optical monitoring for vacuum and wet-bench film-deposition processes is presented. Interferometric and polarimetric measurements are combined with regard to simultaneous monitoring of refractive index and physical thickness in real time. Monitoring stability and accuracy are verified during dip coating with a transparent oil standard. This double optical technique is applied to dip coating with a multicomponent zirconyl chloride aqueous solution, whose resulting temporal refractive-index and physical-thickness curves indicate good reproducibility as well as significant sensitivity to changes of film-flow properties during the dip-coating process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.