Background Women choosing a levonorgestrel-releasing intrauterine system may experience changes in their menstrual bleeding pattern during the first months following placement. Objective Although health care professionals (HCPs) can provide counseling, no method of providing individualized information on the expected bleeding pattern or continued support is currently available for women experiencing postplacement bleeding changes. We aim to develop a mobile phone–based medical app (MyIUS) to meet this need and provide a digital companion to women after the placement of the intrauterine system. Methods The MyIUS app is classified as a medical device and uses an artificial intelligence–based bleeding pattern prediction algorithm to estimate a woman’s future bleeding pattern in terms of intensity and regularity. We developed the app with the help of a multidisciplinary team by using a robust and high-quality design process in the context of a constantly evolving regulatory landscape. The development framework consisted of a phased approach including ideation, feasibility and concept finalization, product development, and product deployment or localization stages. Results The MyIUS app was considered useful by HCPs and easy to use by women who were consulted during the development process. Following the launch of the sustainable app in selected pilot countries, performance metrics will be gathered to facilitate further technical and feature updates and enhancements. A real-world performance study will also be conducted to allow us to upgrade the app in accordance with the new European Commission Medical Device legislation and to validate the bleeding pattern prediction algorithm in a real-world setting. Conclusions By providing a meaningful estimation of bleeding patterns and allowing an individualized approach to counseling and discussions about contraceptive method choice, the MyIUS app offers a useful tool that may benefit both women and HCPs. Further work is needed to validate the performance of the prediction algorithm and MyIUS app in a real-world setting.
BACKGROUND Women choosing a levonorgestrel-releasing intrauterine system may experience changes in their menstrual bleeding pattern during the first months following placement. OBJECTIVE Although health care professionals (HCPs) can provide counseling, no method of providing individualized information on the expected bleeding pattern or continued support is currently available for women experiencing postplacement bleeding changes. We aim to develop a mobile phone–based medical app (MyIUS) to meet this need and provide a digital companion to women after the placement of the intrauterine system. METHODS The MyIUS app is classified as a medical device and uses an artificial intelligence–based bleeding pattern prediction algorithm to estimate a woman’s future bleeding pattern in terms of intensity and regularity. We developed the app with the help of a multidisciplinary team by using a robust and high-quality design process in the context of a constantly evolving regulatory landscape. The development framework consisted of a phased approach including ideation, feasibility and concept finalization, product development, and product deployment or localization stages. RESULTS The MyIUS app was considered useful by HCPs and easy to use by women who were consulted during the development process. Following the launch of the sustainable app in selected pilot countries, performance metrics will be gathered to facilitate further technical and feature updates and enhancements. A real-world performance study will also be conducted to allow us to upgrade the app in accordance with the new European Commission Medical Device legislation and to validate the bleeding pattern prediction algorithm in a real-world setting. CONCLUSIONS By providing a meaningful estimation of bleeding patterns and allowing an individualized approach to counseling and discussions about contraceptive method choice, the MyIUS app offers a useful tool that may benefit both women and HCPs. Further work is needed to validate the performance of the prediction algorithm and MyIUS app in a real-world setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.