Virus-specific CD8 + T cells develop the ability to function in an "innate" capacity by responding to a remarkable array of cytokines in a TCR-independent manner. Although several cytokines such as IL-12 and IL-18 have been identified as key regulators of CD8 + T-cell activation, the role of other cytokines and the ways in which they interact with each other remain unclear. Here, we have used an unbiased, systematic approach to examine the effects of 1,849 cytokine combinations on virus-specific CD8 + T-cell activation. This study identifies several unexpected cytokine combinations that synergize to induce antigen-independent IFNγ production and CD69 up-regulation by CD8 + T cells in addition to cytokines that exhibit differential regulatory functions, with the ability to either enhance or inhibit T-cell IFNγ production, depending on which cytokine partner is present. These findings underscore the complexity of cytokine interactions while also providing insight into the multifaceted regulatory network controlling virusspecific CD8 + T-cell functions.lymphocytic choriomeningitis virus | mouse | interleukin | lymphocyte
SUMMARY Monkeypox (MPXV) and cowpox (CPXV) are emerging agents that cause severe human infections on an intermittent basis, and variola virus (VARV) has potential for use as an agent of bioterror. Vaccinia immune globulin (VIG) has been used therapeutically to treat severe poxvirus infections, but is in short supply. We generated a large panel of orthopoxvirus-specific human monoclonal Abs from immune subjects to investigate the molecular basis of broadly neutralizing antibody responses for diverse orthopoxviruses. Detailed analysis revealed the principal neutralizing antibody specificities that are cross-reactive for VACV, CPXV, MPXV and VARV and that are determinants of protection in murine challenge models. Optimal protection following respiratory or systemic infection required a mixture of Abs that targeted several membrane proteins, including proteins on enveloped and mature virion forms of virus. This work reveals orthopoxvirus targets for human Abs that mediate cross-protective immunity and identifies new candidate Ab therapeutic mixtures to replace VIG.
Safe and effective vaccines are crucial for maintaining public health and reducing the global burden of infectious disease. Here we introduce a new vaccine platform that uses hydrogen peroxide (H2O2) to inactivate viruses for vaccine production. H2O2 rapidly inactivates both RNA and DNA viruses with minimal damage to antigenic structure or immunogenicity and is a highly effective method when compared with conventional vaccine inactivation approaches such as formaldehyde or β-propiolactone. Mice immunized with H2O2-inactivated lymphocytic choriomeningitis virus (LCMV) generated cytolytic, multifunctional virus-specific CD8+ T cells that conferred protection against chronic LCMV infection. Likewise, mice vaccinated with H2O2-inactivated vaccinia virus or H2O2-inactivated West Nile virus showed high virus-specific neutralizing antibody titers and were fully protected against lethal challenge. Together, these studies demonstrate that H2O2-based vaccines are highly immunogenic, provide protection against a range of viral pathogens in mice and represent a promising new approach to future vaccine development.
Virus-specific T cells represent a hallmark of Ag-specific, adaptive immunity. However, some T cells also demonstrate innate functions, including non-Ag-specific IFN-γ production in response to microbial products such as LPS or exposure to IL-12 and/or IL-18. In these studies we examined LPS-induced cytokine responses of CD8+ T cells directly ex vivo. Following acute viral infection, 70–80% of virus-specific T cells will produce IFN-γ after exposure to LPS-induced cytokines, and neutralization experiments indicate that this is mediated almost entirely through production of IL-12 and IL-18. Different combinations of these cytokines revealed that IL-12 decreases the threshold of T cell activation by IL-18, presenting a new perspective on IL-12/IL-18 synergy. Moreover, memory T cells demonstrate high IL-18R expression and respond effectively to the combination of IL-12 and IL-18, but cannot respond to IL-18 alone, even at high cytokine concentrations. This demonstrates that the synergy between IL-12 and IL-18 in triggering IFN-γ production by memory T cells is not simply due to up-regulation of the surface receptor for IL-18, as shown previously with naive T cells. Together, these studies indicate how virus-specific T cells are able to bridge the gap between innate and adaptive immunity during unrelated microbial infections, while attempting to protect the host from cytokine-induced immunopathology and endotoxic shock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.