Intrathymic immune modulation does not abolish alloreactivity, and despite induction of long-lasting graft survival, this procedure does not prevent and may even facilitate the development of GAD.
Individuals with chronic lymphocytic leukemia (CLL) have significant immune disfunction, often further disrupted by treatment. While currently available COVID-19 vaccinations are highly effective in immunocompetent individuals, they are often poorly immunogenic in CLL patients. It is important to understand the role a heterologous boost would have in patients who did not respond to the initial two-dose mRNA vaccine series. SARS-CoV-2 specific immune responses, including antibodies and memory B-cells, CD4 and CD8 T-cells were assessed prior to vaccination, as well as postinitial vaccination series and post-third dose in two subjects. One subject seroconverted, had RBD-specific memory B-cells and spike-specific CD4 T-cells while the other did not. Both subjects had a spike-specific CD8 T-cell response after the original mRNA vaccination series that was further boosted after the third dose or remained stable. The results of this study, however small, are especially promising to CLL individuals who did not seroconvert following the initial mRNA vaccination series.
Chikungunya virus (CHIKV) is an emerging/re-emerging mosquito-borne pathogen responsible for explosive epidemics of febrile illness characterized by debilitating polyarthralgia and the risk of lethal infection among the most severe cases. Despite the public health risk posed by CHIKV, no vaccine is currently available. Using a site-directed hydrogen peroxide-based inactivation approach, we developed a new CHIKV vaccine, HydroVax-CHIKV. This vaccine technology was compared to other common virus inactivation approaches including β-propiolactone (BPL), formaldehyde, heat, and ultraviolet (UV) irradiation. Heat, UV, and BPL were efficient at inactivating CHIKV-181/25 but caused substantial damage to neutralizing epitopes and failed to induce high-titer neutralizing antibodies in vaccinated mice. HydroVax-CHIKV and formaldehyde-inactivated CHIKV retained intact neutralizing epitopes similar to live virus controls but the HydroVax-CHIKV approach demonstrated a more rapid rate of virus inactivation. HydroVax-CHIKV vaccination induced high neutralizing responses to homologous and heterologous CHIKV clades as well as to other alphaviruses including Mayaro virus, O’nyong’nyong virus, and Una virus. Following heterologous infection with CHIKV-SL15649, HydroVax-CHIKV-immunized mice were protected against viremia, CHIKV-associated arthritic disease, and lethal CHIKV infection by an antibody-dependent mechanism. In contrast, animals vaccinated with Heat- or UV-inactivated virus showed no protection against viremia in addition to demonstrating significantly exacerbated CD4+ T cell-mediated footpad swelling after CHIKV infection. Together, these results demonstrate the risks associated with using suboptimal inactivation methods that fail to elicit protective neutralizing antibody responses and show that HydroVax-CHIKV represents a promising new vaccine candidate for prevention of CHIKV-associated disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.