We study the topological susceptibility in 2+1 flavor QCD above the chiral crossover transition temperature using Highly Improved Staggered Quark action and several lattice spacings corresponding to temporal extent of the lattice, N τ = 6, 8, 10 and 12. We observe very distinct temperature dependences of the topological susceptibility in the ranges above and below 250 MeV. While for temperatures above 250 MeV, the dependence is found to be consistent with dilute instanton gas approximation, at lower temperatures the fall-off of topological susceptibility is milder. We discuss the consequence of our results for cosmology wherein we estimate the bounds on the axion decay constant and the oscillation temperature if indeed the QCD axion is a possible dark matter candidate.
We study the free energy of a static quark in QCD with 2+1 flavors in a wide temperature region, 116 MeV < T < 5814 MeV, using the highly improved staggered quark (HISQ) action. We analyze the transition region in detail, obtain the entropy of a static quark, show that it peaks at temperatures close to the chiral crossover temperature and also revisit the temperature dependence of the Polyakov loop susceptibilities using gradient flow. We discuss the implications of our findings for the deconfinement and chiral crossover phenomena at physical values of the quark masses. Finally a comparison of the lattice results at high temperatures with the weak-coupling calculations is presented.
We present continuum extrapolated lattice QCD results for up to fourth order diagonal and offdiagonal quark number susceptibilities in the high temperature region of 300 − 700 MeV. Lattice QCD calculations are performed using 2+1 flavors of highly improved staggered quarks with nearly physical quark masses and at four different lattice spacings. Comparisons of our results with recent weak coupling calculations yield reasonably good agreements for the entire temperature range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.