Given a generic rational curve C in the group of Euclidean displacements we construct a linkage such that the constrained motion of one of the links is exactly C. Our construction is based on the factorization of polynomials over dual quaternions. Low degree examples include the Bennett mechanisms and contain new types of overconstrained 6R-chains as sub-mechanisms.
SUMMARYAlgebraic methods in connection with classical multidimensional geometry have proven to be very efficient in the computation of direct and inverse kinematics of mechanisms as well as the explanation of strange, pathological behavior. In this paper, we give an overview of the results achieved within the last few years using the algebraic geometric method, geometric preprocessing, and numerical analysis. We provide the mathematical and geometrical background, like Study's parametrization of the Euclidean motion group, the ideals belonging to mechanism constraints, and methods to solve polynomial equations. The methods are explained with different examples from mechanism analysis and synthesis.
In this paper we introduce a new technique, based on dual quaternions, for the analysis of closed linkages with revolute joints: the theory of bonds. The bond structure comprises a lot of information on closed revolute chains with a one-parametric mobility. We demonstrate the usefulness of bond theory by giving a new and transparent proof for the well-known classification of overconstrained 5R linkages.
In this paper, we consider the existence of a factorization of a monic, bounded motion polynomial. We prove existence of factorizations, possibly after multiplication with a real polynomial and provide algorithms for computing polynomial factor and factorizations. The first algorithm is conceptually simpler but may require a high degree of the polynomial factor. The second algorithm gives an optimal degree.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.