The opportunistic human pathogen Pseudomonas aeruginosa is the predominant micro-organism of chronic lung infections in cystic fibrosis (CF) patients. P. aeruginosa colonizes the CF lungs by forming biofilm structures in the alveoli. In the biofilm mode of growth the bacteria are highly tolerant to otherwise lethal doses of antibiotics and are protected from bactericidal activity of polymorphonuclear leukocytes (PMNs). P. aeruginosa controls the expression of many of its virulence factors by means of a cell–cell communication system termed quorum sensing (QS). In the present report it is demonstrated that biofilm bacteria in which QS is blocked either by mutation or by administration of QS inhibitory drugs are sensitive to treatment with tobramycin and H2O2, and are readily phagocytosed by PMNs, in contrast to bacteria with functional QS systems. In contrast to the wild-type, QS-deficient biofilms led to an immediate respiratory-burst activation of the PMNs in vitro. In vivo QS-deficient mutants provoked a higher degree of inflammation. It is suggested that quorum signals and QS-inhibitory drugs play direct and opposite roles in this process. Consequently, the faster and highly efficient clearance of QS-deficient bacteria in vivo is probably a two-sided phenomenon: down regulation of virulence and activation of the innate immune system. These data also suggest that a combination of the action of PMNs and QS inhibitors along with conventional antibiotics would eliminate the biofilm-forming bacteria before a chronic infection is established.
The opportunistic human pathogen Pseudomonas aeruginosa is the predominant micro-organism of chronic lung infections in cystic fibrosis patients. P. aeruginosa colonizes the lungs by forming biofilm microcolonies throughout the lung. Quorum sensing (QS) renders the biofilm bacteria highly tolerant to otherwise lethal doses of antibiotics, and protects against the bactericidal activity of polymorphonuclear leukocytes (PMNs). It has been previously demonstrated that QS is inhibited by garlic extract. In this study, the synergistic effects of garlic and tobramycin, and PMNs activities have been evaluated. P. aeruginosa was grown in vitro in continuous-culture once-through flow chambers with and without garlic extract. The garlic-treated biofilms were susceptible to both tobramycin and PMN grazing. Furthermore, the PMNs showed an increase in respiratory burst activation, when incubated with the garlic-treated biofilm. Garlic extract was administered as treatment for a mouse pulmonary infection model. Mice were treated with garlic extract or placebo for 7 days, with the initial 2 days being prophylactic before P. aeruginosa was instilled in the left lung of the mice. Bacteriology, mortality, histopathology and cytokine production were used as indicators. The garlic treatment initially provoked a higher degree of inflammation, and significantly improved clearing of the infecting bacteria. The results indicate that a QS-inhibitory extract of garlic renders P. aeruginosa sensitive to tobramycin, respiratory burst and phagocytosis by PMNs, as well as leading to an improved outcome of pulmonary infections.
The chronic Pseudomonas aeruginosa lung infection in cystic fibrosis (CF) is characterized by a pronounced antibody response and microcolonies surrounded by numerous polymorphonuclear neutrophils (PMN). Poor prognosis is correlated with a high antibody response to P. aeruginosa antigens. An animal model of this infection was established in two strains of mice: C3H/HeN and BALB/c, generally known as Th1 and Th2 responders, respectively, which were challenged with alginate‐embedded P. aeruginosa. Mortality was significantly lower in C3H/HeN compared to BALB/c mice (p<0.025). P. aeruginosa was cleared more efficiently in C3H/HeN mice and significantly more C3H/HeN mice showed normal lung histopathology (p<0.02), and we found significantly fewer microabscesses in C3H/HeN mice than in BALB/c mice (p<0.005). In supernatants from P. aeruginosa antigen and concanavalin A‐stimulated spleen cells from the two strains of mice, the interferon‐ (IFN‐) γ levels were higher, whereas IL‐4 levels were lower in C3H/HeN mice than in BALB/c mice. The implications of these findings for CF patients with chronic P. aeruginosa lung infection are discussed.
Synergistic antimicrobial efficacy could be achieved when treating mice with both a QSI and tobramycin, resulting in an increased clearance of P. aeruginosa in a foreign-body infection model. Our study highlights the important prospects in developing an early combinatory treatment strategy for chronic infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.