Aims The aim of this study was to determine the immediate post-fixation stability of a distal tibial fracture fixed with an intramedullary nail using a biomechanical model. This was used as a surrogate for immediate weight-bearing postoperatively. The goal was to help inform postoperative protocols. Methods A biomechanical model of distal metaphyseal tibial fractures was created using a fourth-generation composite bone model. Three fracture patterns were tested: spiral, oblique, and multifragmented. Each fracture extended to within 4 cm to 5 cm of the plafond. The models were nearly-anatomically reduced and stabilized with an intramedullary nail and three distal locking screws. Cyclic loading was performed to simulate normal gait. Loading was completed in compression at 3,000 N at 1 Hz for a total of 70,000 cycles. Displacement (shortening, coronal and sagittal angulation) was measured at regular intervals. Results The spiral and oblique fracture patterns withstood simulated weight-bearing with minimal displacement. The multifragmented model had early implant failure with breaking of the distal locking screws. The spiral fracture model shortened by a mean of 0.3 mm (SD 0.2), and developed a mean coronal angulation of 2.0° (SD 1.9°) and a mean sagittal angulation of 1.2° (SD 1.1°). On average, 88% of the shortening, 74% of the change in coronal alignment, and 75% of the change in sagittal alignment occurred in the first 2,500 cycles. No late acceleration of displacement was noted. The oblique fracture model shortened by a mean of 0.2 mm (SD 0.1) and developed a mean coronal angulation of 2.4° (SD 1.6°) and a mean sagittal angulation of 2.6° (SD 1.4°). On average, 44% of the shortening, 39% of the change in coronal alignment, and 79% of the change in sagittal alignment occurred in the first 2,500 cycles. No late acceleration of displacement was noted. Conclusion For spiral and oblique fracture patterns, simulated weight-bearing resulted in a clinically acceptable degree of displacement. Most displacement occurred early in the test period, and the rate of displacement decreased over time. Based on this model, we offer evidence that early weight-bearing appears safe for well reduced oblique and spiral fractures, but not in multifragmented patterns that have poor bone contact. Cite this article: Bone Joint J 2021;103-B(2):294–298.
Previous studies have demonstrated the benefits of 2-and 4-tine staple fixation in scapholunate interosseous ligament (SLIL) reconstruction, including improved rotational control and avoidance of the articular surface. This study compared scaphoid and lunate kinematics after SLIL fixation with traditional Kirschner wire (K-wire) fixation or 2-tine staple fixation. Methods: Eight fresh frozen cadaver arms with normal scapholunate (SL) intervals were included. Infrared motion capture was used to assess kinematics between the scaphoid and lunate as the wrists were moved through a simulated dart-throw motion. Kinematic data were recorded for each wrist in 4 states: SLIL intact, SLIL sectioned, K-wire fixation across SL interval and scaphocapitate joint, and 2-tine Nitinol staple fixation across SL interval. Strength of the SL staple fixation was evaluated using an axial load machine to assess load to failure of the staple construct. Results: Range of motion of the scaphoid and lunate with SLIL intact and SLIL sectioned were similar. Kwire fixation across the SL interval significantly decreased the overall wrist range of motion as well as scaphoid and lunate motion in all planes except for scaphoid flexion. Conversely, scaphoid and lunate motion after staple fixation was similar to that in normal wrists, except for a significant decrease in scaphoid extension. Under axial load simulating a ground-level fall, 3 of 8 arms demonstrated no failure, and none of the failures was due to direct failure of the 2-tine staple. Conclusions: This study demonstrates 2-tine staple fixation across the SL interval is effective in providing initial stability and maintaining physiologic motion of the scaphoid and lunate compared with K-wire fixation after SLIL injury. Clinical relevance: This study demonstrates an alternate technique for the stabilization of the SL interval in repair of acute SLIL injuries using 2-tine staple fixation, which maintains near physiologic motion of the scaphoid and lunate after SLIL injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.