There is a strong need to better diagnose infections at deep body sites through noninvasive molecular imaging methods. Herein, we describe the synthesis and characterization of probes based on siderophore conjugates with catechol moieties and a central DOTAM scaffold. The probes can accommodate a metal ion as well as an antibiotic moiety and are therefore suited for theranostic purposes. The translocation of the conjugates across the outer and inner cell membranes of E. coli was confirmed by growth recovery experiments with enterobactin-deficient strains, by the antibacterial activity of ampicillin conjugates, and by confocal imaging using a fluorogen-activating protein-malachite green system adapted to E. coli. The suitability of the probes for in vivo imaging was demonstrated with a Cy5.5 conjugate in mice infected with P. aeruginosa.
Infections by Gram-negative pathogens represent a major health care issue of growing concern due to a striking lack of novel antibacterial agents over the course of the last decades. The main scientific problem behind the rational optimization of novel antibiotics is our limited understanding of small molecule translocation into, and their export from the target compartments of Gram-negative species. To address this issue, a versatile, label-free assay to determine the intracellular localization and concentration of a given compound has been developed for Escherichia coli and its effluximpaired TolC mutant. The assay applies a fractionation procedure to antibiotic-treated bacterial cells to obtain periplasm, cytoplasm and membrane fractions of high purity, as demonstrated by Western Blots of compartment-specific marker proteins. This is followed by an LC-MS/MS-based quantification of antibiotic content in each compartment. Antibiotic amounts could be converted to antibiotic concentrations by assuming that an E. coli cell is a cylinder flanked by two half spheres and calculating the volumes of bacterial compartments. The quantification of antibiotics from different classes, namely ciprofloxacin, tetracycline, trimethoprim and erythromycin demonstrated pronounced differences in uptake quantities and distribution patterns across the compartments. For example, in the case of ciprofloxacin a higher amount of compound was located in the cytoplasm than in the periplasm (592 pg ±50 pg vs 277 ±13 pg per 3.9x10 9 cells), but owing to the smaller volume of the periplasmic compartment, its concentration in the cytoplasm was much lower (37 ±3 pg/µl vs. 221 ±10 pg/µl for the periplasm). For erythromycin and tetracycline, differences in MICs between WT and TolC mutant strains were not reflected by equal differences in uptake, illustrating that additional experimental data are needed to predict antibiotic efficacy. We believe that our assay, providing the antibiotic concentration at the compartment in which the drug target is expressed, constitutes an essential piece of information for a more rational optimization of novel antibiotics against Gram-negative infections.
The multifaceted protein clusterin (CLU) has been challenging researchers for more than 35 years. The characterization of CLU as a molecular chaperone was one of the major breakthroughs in CLU research. Today, secretory clusterin (sCLU), also known as apolipoprotein J (apoJ), is considered one of the most important extracellular chaperones ever found. It is involved in a broad range of physiological and pathophysiological functions, where it exerts a cytoprotective role. Descriptions of various forms of intracellular CLU have led to further and even contradictory functions. To untangle the current state of knowledge of CLU, this review will combine old views in the field, with new discoveries to highlight the nature and function of this fascinating protein(s). In this review, we further describe the expression and subcellular location of various CLU forms. Moreover, we discuss recent insights into the structure of CLU and assess how structural properties as well as the redox environment determine the chaperone activity of CLU. Eventually, the review connects the biochemistry and molecular cell biology of CLU with medical aspects, to formulate a hypothesis of a CLU function in health and disease.
Clusterin, also known as apolipoprotein J, is expressed from a variety of tissues and implicated in pathological disorders such as neurodegenerative diseases, ischemia and cancer. In contrast to secretory clusterin (sCLU), which acts as an extracellular chaperone, the synthesis, subcellular localization and function(s) of intracellular CLU isoforms is currently a matter of intense discussion. By investigating human CLU mRNAs we here unravel mechanisms leading to the synthesis of distinct CLU protein isoforms and analyze their subcellular localization and their impact on apoptosis and on NF-κB-activity. Quantitative PCR-analyses revealed the expression of four different stress-inducible CLU mRNA variants in non-cancer and cancer cell lines. In all cell lines variant 1 represents the most abundant mRNA, whereas all other variants collectively account for no more than 0.34% of total CLU mRNA, even under stressed conditions. Overexpression of CLU cDNAs combined with in vitro mutagenesis revealed distinct translational start sites including a so far uncharacterized non-canonical CUG start codon. We show that all exon 2-containing mRNAs encode sCLU and at least three non-glycosylated intracellular isoforms, CLU1‑449, CLU21‑449 and CLU34‑449, which all reside in the cytosol of unstressed and stressed HEK‑293 cells. The latter is the only form expressed from an alternatively spliced mRNA variant lacking exon 2. Functional analysis revealed that none of these cytosolic CLU forms modulate caspase-mediated intrinsic apoptosis or significantly affects TNF-α-induced NF-κB-activity. Therefore our data challenge some of the current ideas regarding the physiological functions of CLU isoforms in pathologies.
Background/Aims: Clusterin (CLU), also known as Apolipoprotein J (ApoJ) is a highly glycosylated extracellular chaperone. In humans it is expressed from a broad spectrum of tissues and related to a plethora of physiological and pathophysiological processes, such as Alzheimer's disease, atherosclerosis and cancer. In its dominant form it is expressed as a secretory protein (secreted CLU, sCLU). During its maturation, the sCLU-precursor is N-glycosylated and cleaved into an α- and a β-chain, which are connected by five symmetrical disulfide bonds. Recently, it has been demonstrated that besides the predominant sCLU, rare intracellular CLU forms are expressed in stressed cells. Since these forms do not enter or complete the secretory pathway, they are not proteolytically modified and show either no or only core glycosylation. Due to their sparsity, these intracellular forms are functionally poorly characterized. To evaluate the function(s) of these stress-related intracellular forms, we investigate for the first time the impact of proteolytic cleavage, differential glycosylation and the influence of the redox environment on the chaperone activity of CLU. Methods: Non-cleavable sCLU was generated by expression from a mutant construct of sCLU, in which the furin-like proprotein convertase (PC) recognition site was modified. After purification of recombinant uncleaved sCLU from the medium of over-expressing cells, we performed chaperone activity assays to compare the activities of wild-type (cleaved) and uncleaved mutant sCLU. Additionally, this approach enabled us to investigate the role of carbohydrates, the proteolytic maturation and reducing conditions on CLU chaperone activity. Further, we characterized the differentially treated CLU forms by using MALDI-TOF, CD-spectroscopy and Western blotting in addition to the functional assay. Results: We show that the PC-cleavage is dispensable for sCLU chaperone activity. Moreover, our data demonstrate that while fully deglycosylated sCLU lacks chaperone activity, partially deglycosylated sCLU is still capable of solubilizing target proteins. Most importantly, we here demonstrate for the first time that uncleaved sCLU is highly sensitive towards reducing conditions. Conclusions: Our study provides evidence that unglycosylated intracellular CLU forms cannot exhibit a chaperone activity compared to sCLU. Additionally, we support recent postulates that glycosylated intracellular CLU forms may act as a redox sensor under oxidative stress conditions. Furthermore, we conclude that the proteolytic cleavage of sCLU is important to maintain full chaperone activity, i.e. in the presence of necrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.