Vibrio anguillarum, also known as Listonella anguillarum, is the causative agent of vibriosis, a deadly haemorrhagic septicaemic disease affecting various marine and fresh/brackish water fish, bivalves and crustaceans. In both aquaculture and larviculture, this disease is responsible for severe economic losses worldwide. Because of its high morbidity and mortality rates, substantial research has been carried out to elucidate the virulence mechanisms of this pathogen and to develop rapid detection techniques and effective disease-prevention strategies. This review summarizes the current state of knowledge pertaining to V. anguillarum, focusing on pathogenesis, known virulence factors, diagnosis, prevention and treatment.
SummaryFungi of the genus Aspergillus are widespread in the environment. Some Aspergillus species, most commonly Aspergillus fumigatus, may lead to a variety of allergic reactions and life‐threatening systemic infections in humans. Invasive aspergillosis occurs primarily in patients with severe immunodeficiency, and has dramatically increased in recent years. There are several factors at play that contribute to aspergillosis, including both fungus and host‐related factors such as strain virulence and host pulmonary structure/immune status, respectively. The environmental tenacity of Aspergilllus, its dominance in diverse microbial communities/habitats, and its ability to navigate the ecophysiological and biophysical challenges of host infection are attributable, in large part, to a robust stress‐tolerance biology and exceptional capacity to generate cell‐available energy. Aspects of its stress metabolism, ecology, interactions with diverse animal hosts, clinical presentations and treatment regimens have been well‐studied over the past years. Here, we synthesize these findings in relation to the way in which some Aspergillus species have become successful opportunistic pathogens of human‐ and other animal hosts. We focus on the biophysical capabilities of Aspergillus pathogens, key aspects of their ecophysiology and the flexibility to undergo a sexual cycle or form cryptic species. Additionally, recent advances in diagnosis of the disease are discussed as well as implications in relation to questions that have yet to be resolved.
A major challenge for microbiologists is to elucidate the strategies deployed by microorganisms to adapt to and thrive in highly complex and dynamic environments. In vitro studies, including those monitoring genomewide changes, have proven their value, but they can, at best, mimic only a subset of the ensemble of abiotic and biotic stimuli that microorganisms experience in their natural habitats. The widely used gene-to-phenotype approach involves the identification of altered niche-related phenotypes on the basis of gene inactivation. However, many traits contributing to ecological performance that, upon inactivation, result in only subtle or difficult to score phenotypic changes are likely to be overlooked by this otherwise powerful approach. Based on the premise that many, if not most, of the corresponding genes will be induced or upregulated in the environment under study, ecologically significant genes can alternatively be traced using the promoter trap techniques differential fluorescence induction and in vivo expression technology (IVET). The potential and limitations are discussed for the different IVET selection strategies and system-specific variants thereof. Based on a compendium of genes that have emerged from these promoter-trapping studies, several functional groups have been distinguished, and their physiological relevance is illustrated with follow-up studies of selected genes. In addition to confirming results from largely complementary approaches such as signature-tagged mutagenesis, some unexpected parallels as well as distinguishing features of microbial phenotypic acclimation in diverse environmental niches have surfaced. On the other hand, by the identification of a large proportion of genes with unknown function, these promoter-trapping studies underscore how little we know about the secret lives of bacteria and other microorganisms
Pseudomonas stutzeri A15 is a nitrogen-fixing bacterium isolated from paddy rice. Strain A15 is able to colonize and infect rice roots. This strain may provide rice plants with fixed nitrogen and hence promote plant growth. In this article, we describe the use of dapB-based in vivo expression technology to identify P. stutzeri A15 genes that are specifically induced during colonization and infection (cii). We focused on the identification of P. stutzeri A15 genes that are switched on during rice root colonization and are switched off during free-living growth on synthetic medium. Several transcriptional fusions induced in the rice rhizosphere were isolated. Some of the corresponding genes are involved in the stress response, chemotaxis, metabolism, and global regulation, while others encode putative proteins with unknown functions or without significant homology to known proteins.Rice (Oryza sativa L.) is the staple food of over 40% of the world's population. Considering the increase in the world's population and the limited possibility to expand the acreage under cultivation, increasing the yield of rice production is of great concern. Yields in systems with a low input of N fertilizer can be increased considerably by a higher level of fertilization. However, the environmental concerns raised against the extensive use of fertilizers necessitate the search for alternatives. One of the explored alternatives is biofertilization through the interaction between nitrogen-fixing plant-growth-promoting rhizobacteria and rice.The diazotrophic strain A15 was isolated during surveys for nitrogen-fixing bacteria in the rhizosphere of paddy rice grown in China with suboptimal N fertilization (78). Yield increases of 3 to 7% have been reported for field-grown rice inoculated with strain A15 (77). Initially, this strain was phenotypically characterized as Alcaligenes faecalis, but the taxonomic position of strain A15 was reinvestigated, and it was reclassified as Pseudomonas stutzeri (69). It has been shown that the strain A15 nitrogen fixation genes (nif) are expressed in the rice rhizosphere (68). Since strain A15 is able to infect rice roots and survive within rice plants (24,67,79), it may provide rice plants with fixed nitrogen and hence promote plant growth. However, direct evidence for bacterial N transfer to the plants is still lacking.At present, the mechanisms that enable strain A15 to colonize and infect rice roots and survive within rice plants are not known. The lack of a readily scored plant phenotype has hampered the identification and characterization of the P. stutzeri A15 genes that are required for interaction with the host plant. Because conditions during bacterium-host interactions are difficult to mimic in vitro, new techniques have been devised to study in vivo gene expression; these include differential fluorescence induction, signature-tagged mutagenesis, RNA arbitrarily primed PCR, and in vivo expression technology (IVET) (reviewed in references 8, 22, and 51). In this study, an IVET strategy was dev...
Rhizogenic Agrobacterium biovar 1 strains have been found to cause extensive root proliferation on hydroponically grown Cucurbitaceae and Solanaceae crops, resulting in substantial economic losses. As these agrobacteria live under similar ecological conditions, infecting a limited number of crops, it may be hypothesized that genetic and phenotypic variation among such strains is relatively low. In this study we assessed the phenotypic diversity as well as the phylogenetic and evolutionary relationships of several rhizogenic Agrobacterium biovar 1 strains from cucurbit and solanaceous crops. A collection of 41 isolates was subjected to a number of phenotypic assays and characterized by MLSA targeting four housekeeping genes (16S rRNA gene, recA, rpoB and trpE) and two loci from the root-inducing Ri-plasmid (part of rolB and virD2). Besides phenotypic variation, remarkable genotypic diversity was observed, especially for some chromosomal loci such as trpE. In contrast, genetic diversity was lower for the plasmid-borne loci, indicating that the studied chromosomal housekeeping genes and Ri-plasmid-borne loci might not exhibit the same evolutionary history. Furthermore, phylogenetic and network analyses and several recombination tests suggested that recombination could be contributing in some extent to the evolutionary dynamics of rhizogenic Agrobacterium populations. Finally, a genomospecies-level identification analysis revealed that at least four genomospecies may occur on cucurbit and tomato crops (G1, G3, G8 and G9). Together, this study gives a first glimpse at the genetic and phenotypic diversity within this economically important plant pathogenic bacterium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.