Measurements of stellar mass loss rates are used to assess how wind strength varies with coronal activity and age for solar-like stars. Mass loss generally increases with activity, but we find evidence that winds suddenly weaken at a certain activity threshold. Very active stars are often observed to have polar starspots, and we speculate that the magnetic field geometry associated with these spots may be inhibiting the winds. Our inferred mass-loss/age relation represents an empirical estimate of the history of the solar wind. This result is important for planetary studies as well as solar/stellar astronomy, since solar wind erosion may have played an important role in the evolution of planetary atmospheres.
Collisions between the winds of solar-like stars and the local ISM result in a population of hot hydrogen gas surrounding these stars. Absorption from this hot H I can be detected in high resolution Lyα spectra of these stars from the Hubble Space Telescope. The amount of absorption can be used as a diagnostic for the stellar mass loss rate. We present new mass loss rate measurements derived in this fashion for four stars (ǫ Eri, 61 Cyg A, 36 Oph AB, and 40 Eri A). Combining these measurements with others, we study how mass loss varies with stellar activity. We find that for the solar-like GK dwarfs, the mass loss per unit surface area is correlated with X-ray surface flux. Fitting a power law to this relation yields Ṁ ∝ F 1.15±0.20x . The active M dwarf Proxima Cen and the very active RS CVn system λ And appear to be inconsistent with this relation. Since activity is known to decrease with age, the above power law relation for solar-like stars suggests that mass loss decreases with time. We infer a power law relation of Ṁ ∝ t −2.00±0.52 . This suggests that the solar wind may have been as much as 1000 times more massive in the distant past, which may have had important ramifications for the history of planetary atmospheres in our solar system, that of Mars in particular.
We search the Hubble Space Telescope (HST) archive for previously unanalyzed observations of stellar H I Lyα emission lines, our primary purpose being to look for new detections of Lyα absorption from the outer heliosphere, and to also search for analogous absorption from the astrospheres surrounding the observed stars. The astrospheric absorption is of particular interest because it can be used to study solar-like stellar winds that are otherwise undetectable. We find and analyze 33 HST Lyα spectra in the archive. All the spectra were taken with the E140M grating of the Space Telescope Imaging Spectrograph (STIS) instrument on board HST. The HST/STIS spectra yield 4 new detections of heliospheric absorption (70 Oph, ξ Boo, 61 Vir, and HD 165185) and 7 new detections of astrospheric absorption (EV Lac, 70 Oph, ξ Boo, 61 Vir, δ Eri, HD 128987, and DK UMa), doubling the previous number of heliospheric and astrospheric detections. When combined with previous results, 10 of 17 lines of sight within 10 pc yield detections of astrospheric absorption. This high detection fraction implies that most of the ISM within 10 pc must be at least partially neutral, since the presence of H I within the ISM surrounding the observed star is necessary for an astrospheric detection. In contrast, the detection percentage is only 9.7% (3 out of 31) for stars beyond 10 pc. Our Lyα analyses provide measurements of ISM H I and D I column densities for all 33 lines of sight, and we discuss some implications of these results. Finally, we measure chromospheric Lyα fluxes from the observed stars. We use these fluxes to determine how Lyα flux correlates with coronal X-ray and chromospheric Mg II emission, and we also study how Lyα emission depends on stellar rotation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.