Reinforcement learning is the problem of autonomously learning a policy guided only by a reward function. We evaluate the performance of the Proximal Policy Optimization (PPO) reinforcement learning algorithm on a sensor management task and study the influence of several design choices about the network structure and reward function. The chosen sensor management task is optimizing the sensor path to speed up the localization of an emitter using only bearing measurements. Furthermore we discuss generic advantages and challenges when using reinforcement learning for sensor management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.