We present a novel combination of disjunctive programs under the answer set semantics with description logics for the Semantic Web. The combination is based on a well-balanced interface between disjunctive programs and description logics, which guarantees the decidability of the resulting formalism without assuming syntactic restrictions. We show that the new formalism has very nice semantic properties. In particular, it faithfully extends both disjunctive programs and description logics. Furthermore, we describe algorithms for reasoning in the new formalism, and we give a precise picture of its computational complexity. We also define the well-founded semantics for the normal case, where normal programs are combined with tractable description logics, and we explore its semantic and computational properties. In particular, we show that the well-founded semantics approximates the answer set semantics. We also describe algorithms for the problems of consistency checking and literal entailment under the well-founded semantics, and we give a precise picture of their computational complexity. As a crucial property, in the normal case, consistency checking and literal entailment under the well-founded semantics are both tractable in the data complexity, and even first-order rewritable (and thus can be done in LOGSPACE in the data complexity) in a special case that is especially useful for representing mappings between ontologies.The Semantic Web [7,28] aims at an extension of the current World Wide Web by standards and technologies that help machines to understand the information on the Web so that they can support richer discovery, data integration, navigation, and automation of tasks. The main ideas behind it are to add a machine-readable meaning to Web pages, to use ontologies for a precise definition of shared terms in Web resources, to use knowledge representation technology for automated reasoning from Web resources, and to apply cooperative agent technology for processing the information of the Web.The Semantic Web consists of several hierarchical layers, where the Ontology layer, in form of the OWL Web Ontology Language [63,35,5], is currently the highest layer of sufficient maturity. OWL consists of three increasingly expressive sublanguages, namely OWL Lite, OWL DL, and OWL Full. OWL Lite and OWL DL are essentially very expressive description logics with an RDF syntax [35]. As shown in [33], ontology entailment in OWL Lite (resp., OWL DL) reduces to knowledge base (un)satisfiability in the description logic SHIF(D) (resp., SHOIN (D)). As a next important step in the development of the Semantic Web, one aims at sophisticated representation and reasoning capabilities for the Rules, Logic, and Proof layers of the Semantic Web.In particular, there is a large body of work on integrating rules and ontologies, which is a key requirement of the layered architecture of the Semantic Web. Significant research efforts focus on hybrid integrations of rules and ontologies, called description logic programs (or dl-programs)...
In this paper, we consider an approach to update nonmonotonic knowledge bases represented as extended logic programs under the answer set semantics. In this approach, new information is incorporated into the current knowledge base subject to a causal rejection principle, which enforces that, in case of conflicts between rules, more recent rules are preferred and older rules are overridden. Such a rejection principle is also exploited in other approaches to update logic programs, notably in the method of dynamic logic programming, due to Alferes et al.One of the central issues of this paper is a thorough analysis of various properties of the current approach, in order to get a better understanding of the inherent causal rejection principle. For this purpose, we review postulates and principles for update and revision operators which have been proposed in the area of theory change and nonmonotonic reasoning. Moreover, some new properties for approaches to updating logic programs are considered as well. Like related update approaches, the current semantics does not incorporate a notion of minimality of change, so we consider refinements of the semantics in this direction. As well, we investigate the relationship of our approach to others in more detail. In particular, we show that the current approach is semantically equivalent to inheritance programs, which have been independently defined by Buccafurri et al., and that it coincides with certain classes of dynamic logic programs, for which we provide characterizations in terms of graph conditions. In view of this analysis, most of our results about properties of the causal rejection principle apply to each of these approaches as well. Finally, we also deal with computational issues. Besides a discussion on the computational complexity of our approach, we outline how the update semantics and its refinements can be directly implemented on top of existing logic programming systems. In the present case, we implemented the update approach using the logic programming system DLV.
We introduce a methodology and framework for expressing general preference information in logic programming under the answer set semantics. An ordered logic program is an extended logic program in which rules are named by unique terms, and in which preferences among rules are given by a set of atoms of form s ≺ t where s and t are names. An ordered logic program is transformed into a second, regular, extended logic program wherein the preferences are respected, in that the answer sets obtained in the transformed program correspond with the preferred answer sets of the original program. Our approach allows the specification of dynamic orderings, in which preferences can appear arbitrarily within a program. Static orderings (in which preferences are external to a logic program) are a trivial restriction of the general dynamic case. First, we develop a specific approach to reasoning with preferences, wherein the preference ordering specifies the order in which rules are to be applied. We then demonstrate the wide range of applicability of our framework by showing how other approaches, among them that of Brewka and Eiter, can be captured within our framework. Since the result of each of these transformations is an extended logic program, we can make use of existing implementations, such as dlv and smodels. To this end, we have developed a publicly available compiler as a front-end for these programming systems.
Abstract. Towards providing a suitable tool for building the Rule Layer of the Semantic Web, hex-programs have been introduced as a special kind of logic programs featuring capabilities for higher-order reasoning, interfacing with external sources of computation, and default negation. Their semantics is based on the notion of answer sets, providing a transparent interoperability with the Ontology Layer of the Semantic Web and full declarativity. In this paper, we identify classes of hex-programs feasible for implementation yet keeping the desirable advantages of the full language. A general method for combining and evaluating sub-programs belonging to arbitrary classes is introduced, thus enlarging the variety of programs whose execution is practicable. Implementation activity on the current prototype is also reported.
Abstract. We consider the simplification of logic programs under the stablemodel semantics, with respect to the notions of strong and uniform equivalence between logic programs, respectively. Both notions have recently been considered for nonmonotonic logic programs (the latter dates back to the 1980s, though) and provide semantic foundations for optimizing programs with input. Extending previous work, we investigate syntactic and semantic rules for program transformation, based on proper notions of consequence. We furthermore provide encodings of these notions in answer-set programming, and give characterizations of programs which are semantically equivalent to positive and Horn programs, respectively. Finally, we investigate the complexity of program simplification and determining semantical equivalence, showing that the problems range between coNP and Π P 2 complexity, and we present some tractable cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.