Because of their abundance, resistance to proteolysis, rapid aggregation and neurotoxicity, N-terminally truncated and, in particular, pyroglutamate (pE)-modified Abeta peptides have been suggested as being important in the initiation of pathological cascades resulting in the development of Alzheimer's disease. We found that the N-terminal pE-formation is catalyzed by glutaminyl cyclase in vivo. Glutaminyl cyclase expression was upregulated in the cortices of individuals with Alzheimer's disease and correlated with the appearance of pE-modified Abeta. Oral application of a glutaminyl cyclase inhibitor resulted in reduced Abeta(3(pE)-42) burden in two different transgenic mouse models of Alzheimer's disease and in a new Drosophila model. Treatment of mice was accompanied by reductions in Abeta(x-40/42), diminished plaque formation and gliosis and improved performance in context memory and spatial learning tests. These observations are consistent with the hypothesis that Abeta(3(pE)-42) acts as a seed for Abeta aggregation by self-aggregation and co-aggregation with Abeta(1-40/42). Therefore, Abeta(3(pE)-40/42) peptides seem to represent Abeta forms with exceptional potency for disturbing neuronal function. The reduction of brain pE-Abeta by inhibition of glutaminyl cyclase offers a new therapeutic option for the treatment of Alzheimer's disease and provides implications for other amyloidoses, such as familial Danish dementia.
Extracellular plaques of β-amyloid (Aβ) and intraneuronal neurofibrillary tangles made from tau are the histopathological signatures of Alzheimer's disease (AD). Plaques comprise Aβ fibrils that assemble from monomeric and oligomeric intermediates, and are prognostic indicators of AD. Despite the significance of plaques to AD, oligomers are considered to be the principal toxic forms of Aβ 1,2 . Interestingly, many adverse responses to Aβ, such as cytotoxicity 3 , microtubule loss 4 , impaired memory and learning 5 , and neuritic degeneration 6 , are greatly amplified by tau expression. N-terminally truncated, pyroglutamylated (pE) forms of Aβ 7,8 are strongly associated with AD, are more toxic than Aβ 1-42 and Aβ , and have been proposed as initiators of AD Users may view, print, copy, download and text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms * Correspondence: gsb4g@virginia.edu. **Correspondence: Hans-Ulrich.Demuth@probiodrug.de. J.M.N and S.S. contributed equally to the paper.Full Methods and relevant references will be available in the online Supplementary Information accompanying this paper at http:// www.nature.com/nature.Author Contributions: J.M.N. performed most of the biochemical and cell biological experiments; S.S. was the principal force behind the experiments involving hAPP SL /hQC and TBA2.1/tau KO mice, and was aided by B.H.-P., H.C.; A.S. and T.W. fractionated and analyzed human brain extracts; E.S., K.Y. and B.W. performed the peri-hippocampal injection experiments; A.H. and C.G.G. produced and characterized the M64 and M87 antibodies; R.R. and K.R. performed the electrophysiology experiments; A.A., W.J. and S.G. performed and analyzed the immunohistochemical experiments on TBA2.1 and Tau-KO/TBA2.1 mice; G.S.B. and H.-U.D. initiated and directed the project; G.S.B. was the principal writer of the paper; all of the authors participated in the design and analysis of experiments, and in editing of the paper. Fig. 2) to the oligomers. HHS Public AccessAt 5 μM peptide, 5% pE-Aβ aggregated faster than Aβ 3(pE)-42 or Aβ 1-42 alone based on thioflavin T fluorescence shifts 15 ( Supplementary Fig. 3). The OD 450 /OD 490 ratio for Aβ 3(pE)-42 rose and peaked more rapidly than for Aβ 1-42 , but peaked at an ~25% lower level. The fastest rise in the OD 450 /OD 490 ratio was for 5% pE-Aβ, which peaked similarly to Aβ 3(pE)-42 . Aβ 3(pE)-42 , Aβ 1-42 and 5% pE-Aβ thus oligomerized by different pathways.To test whether distinct biological activities were coupled to these oligomerization differences, we compared cytotoxicity of the peptides towards cultured neurons or glia using calcein-AM and fluorescence microscopy 16 . Twelve hours of Aβ 1-42 exposure had little effect on cell viability for wild type (WT) or tau knockout (KO) neurons, or WT glial cells (Fig. 1a). Contrastingly, most WT neurons died and detached from the substrate after exposur...
Incretins, endogenous polypeptide hormones released in response to food intake, potentiate insulin secretion from pancreatic  cells after oral glucose ingestion (the incretin effect). This response is signaled by the two peptide hormones glucose-dependent insulinotropic polypeptide (GIP) (also known as gastric inhibitory polypeptide) and glucagon-like peptide 1 through binding and activation of their cognate class 2 G protein-coupled receptors (GPCRs). Because the incretin effect is lost or significantly reduced in patients with type 2 diabetes mellitus, glucagon-like peptide 1 and GIP have attracted considerable attention for their potential in antidiabetic therapy. A paucity of structural information precludes a detailed understanding of the processes of hormone binding and receptor activation, hampering efforts to develop novel pharmaceuticals. Here we report the crystal structure of the complex of human GIP receptor extracellular domain (ECD) with its agonist, the incretin GIP 1-42. The hormone binds in an ␣-helical conformation in a surface groove of the ECD largely through hydrophobic interactions. The N-terminal ligand residues would remain free to interact with other parts of the receptor. Thermodynamic data suggest that binding is concomitant with structural organization of the hormone, resulting in a complex mode of receptor-ligand recognition. The presentation of a well structured, ␣-helical ligand by the ECD is expected to be conserved among other hormone receptors of this class.glucose-dependent insulinotropic polypeptide ͉ hormone binding ͉ diabetes mellitus ͉ x-ray
The membrane-bound glycoprotein dipeptidyl peptidase IV (DP IV, CD26) is a unique multifunctional protein, acting as receptor, binding and proteolytic molecule. We have determined the sequence and 1.8 Å crystal structure of native DP IV prepared from porcine kidney. The crystal structure reveals a 2-2-2 symmetric tetrameric assembly which depends on the natively glycosylated -propeller blade IV. The crystal structure indicates that tetramerization of DP IV is a key mechanism to regulate its interaction with other components. Each subunit comprises two structural domains, the N-terminal eight-bladed -propeller with open Velcro topology and the C-terminal ␣͞-hydrolase domain. Analogy with the structurally related POP and tricorn protease suggests that substrates access the buried active site through the -propeller tunnel while products leave the active site through a separate side exit. A dipeptide mimicking inhibitor complexed to the active site discloses key determinants for substrate recognition, including a Glu-Glu motif that distinguishes DP IV as an aminopeptidase and an oxyanion trap that binds and activates the P 2-carbonyl oxygen necessary for efficient postproline cleavage. We discuss active and nonactive site-directed inhibition strategies of this pharmaceutical target protein.serine protease ͉ oxyanion hole ͉ substrate channeling ͉ drug design ͉ diabetes mellitus
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.