Extracellular plaques of β-amyloid (Aβ) and intraneuronal neurofibrillary tangles made from tau are the histopathological signatures of Alzheimer's disease (AD). Plaques comprise Aβ fibrils that assemble from monomeric and oligomeric intermediates, and are prognostic indicators of AD. Despite the significance of plaques to AD, oligomers are considered to be the principal toxic forms of Aβ 1,2 . Interestingly, many adverse responses to Aβ, such as cytotoxicity 3 , microtubule loss 4 , impaired memory and learning 5 , and neuritic degeneration 6 , are greatly amplified by tau expression. N-terminally truncated, pyroglutamylated (pE) forms of Aβ 7,8 are strongly associated with AD, are more toxic than Aβ 1-42 and Aβ , and have been proposed as initiators of AD Users may view, print, copy, download and text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms * Correspondence: gsb4g@virginia.edu. **Correspondence: Hans-Ulrich.Demuth@probiodrug.de. J.M.N and S.S. contributed equally to the paper.Full Methods and relevant references will be available in the online Supplementary Information accompanying this paper at http:// www.nature.com/nature.Author Contributions: J.M.N. performed most of the biochemical and cell biological experiments; S.S. was the principal force behind the experiments involving hAPP SL /hQC and TBA2.1/tau KO mice, and was aided by B.H.-P., H.C.; A.S. and T.W. fractionated and analyzed human brain extracts; E.S., K.Y. and B.W. performed the peri-hippocampal injection experiments; A.H. and C.G.G. produced and characterized the M64 and M87 antibodies; R.R. and K.R. performed the electrophysiology experiments; A.A., W.J. and S.G. performed and analyzed the immunohistochemical experiments on TBA2.1 and Tau-KO/TBA2.1 mice; G.S.B. and H.-U.D. initiated and directed the project; G.S.B. was the principal writer of the paper; all of the authors participated in the design and analysis of experiments, and in editing of the paper. Fig. 2) to the oligomers. HHS Public AccessAt 5 μM peptide, 5% pE-Aβ aggregated faster than Aβ 3(pE)-42 or Aβ 1-42 alone based on thioflavin T fluorescence shifts 15 ( Supplementary Fig. 3). The OD 450 /OD 490 ratio for Aβ 3(pE)-42 rose and peaked more rapidly than for Aβ 1-42 , but peaked at an ~25% lower level. The fastest rise in the OD 450 /OD 490 ratio was for 5% pE-Aβ, which peaked similarly to Aβ 3(pE)-42 . Aβ 3(pE)-42 , Aβ 1-42 and 5% pE-Aβ thus oligomerized by different pathways.To test whether distinct biological activities were coupled to these oligomerization differences, we compared cytotoxicity of the peptides towards cultured neurons or glia using calcein-AM and fluorescence microscopy 16 . Twelve hours of Aβ 1-42 exposure had little effect on cell viability for wild type (WT) or tau knockout (KO) neurons, or WT glial cells (Fig. 1a). Contrastingly, most WT neurons died and detached from the substrate after exposur...
SUMMARY Period determination in the mammalian circadian clock involves the turnover rate of the repressors, CRY and PER. Here we show that CRY ubiquitination engages two competing E3 ligase complexes that either lengthen or shorten circadian period in mice. Cloning of a short-period circadian mutant, Past-time, revealed a glycine to glutamate (G149E) missense mutation in Fbxl21, an F-box protein gene that is a paralog of Fbxl3 that targets the CRY proteins for degradation. While loss-of-function of FBXL3 leads to period lengthening, mutation of Fbxl21 causes period shortening. FBXL21 forms an SCF E3 ligase complex that slowly degrades CRY in the cytoplasm, but antagonizes the stronger E3 ligase activity of FBXL3 in the nucleus. FBXL21 plays a dual role: protecting CRY from FBXL3 degradation in the nucleus and promoting CRY degradation within the cytoplasm. Thus, the balance and cellular compartmentalization of competing E3 ligases for CRY determine circadian period of the clock in mammals.
Nonalcoholic fatty liver disease is the most common liver disease in both adults and children. The earliest stage of this disease is hepatic steatosis, in which triglycerides are deposited as cytoplasmic lipid droplets in hepatocytes. Through a forward genetic approach in zebrafish, we found that guanosine monophosphate (GMP) synthetase mutant larvae develop hepatic steatosis. We further demonstrate that activity of the small GTPase Rac1 and Rac1-mediated production of reactive oxygen species (ROS) are down-regulated in GMP synthetase mutant larvae. Inhibition of Rac1 activity or ROS production in wild-type larvae by small molecule inhibitors was sufficient to induce hepatic steatosis. More conclusively, treating larvae with hydrogen peroxide, a diffusible ROS that has been implicated as a signaling molecule, alleviated hepatic steatosis in both GMP synthetase mutant and Rac1 inhibitor-treated larvae, indicating that homeostatic production of ROS is required to prevent hepatic steatosis. We further found that ROS positively regulate the expression of the triglyceride hydrolase gene, which is responsible for the mobilization of stored triglycerides in hepatocytes. Consistently, inhibition of triglyceride hydrolase activity in wild-type larvae by a small molecule inhibitor was sufficient to induce hepatic steatosis. Conclusion: de novo GMP synthesis influences the activation of the small GTPase Rac1, which controls hepatic lipid dynamics through ROS-mediated regulation of triglyceride hydrolase expression in hepatocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.