When environmental conditions change, species usually face three options: adaptation, range shifts, or extinction. In the wake of climate change, it is generally believed that range shifts are the norm in mobile species such as birds, resulting in poleward range shifts. The European Bee-eater is a predominantly Mediterranean species which has expanded its range to higher latitudes over the last decades. Germany in particular has seen a surge in breeding pairs and foundation of new colonies. However, while many experts suggest climate warming as the main driver behind this range expansion, an explicit quantification remains open. Here, we use an ensemble modelling approach to study the recent climatic niche suitability of the European Bee-eater across Europe with a special focus on Germany and project its predicted Palaearctic breeding distribution onto the year 2050 using two global circulation models and two representative concentration pathways. Models were able to predict the current European range of the species with some underestimated areas in Central and Eastern Europe, depending on the selected model. We found a strong relationship between climatic suitable areas and estimated population sizes across European countries that is reflected in most algorithms. In particular, the German population size is in line with climate suitability in the country suggesting a strong climate–population relationship and a high degree of niche filling. Most future predictions point to an ongoing northward expansion of the species while areas in Southern Europe and the Maghreb area remain largely suitable. The strong climate–population relationship makes the European Bee-eater an appropriate indicator species for climate change. Yet the high variability of modelling algorithms also call for caution of using these techniques without careful inspection.
An examination was made of 521 ringing recoveries of Whinchats. Site fidelity (birds returning to within 1 km of the ringing locality), territory fidelity (returning to within 150 m of the ringing locality) and dispersal distances were calculated for adult males and females and for one-year old birds of both sexes. One-year olds were found to be much less faithful to their birth place than older birds were to their breeding place. Territory fidelity is most pronounced in old males, followed by old females and finally by one year old birds, which returned to their natal area. The same pattern was found for dispersal distances.
Oscillations of periods with low and high temperatures during the Quaternary in the northern hemisphere have influenced the genetic composition of birds of the Palearctic. During the last glaciation, ending about 12,000 years ago, a wide area of the northern Palearctic was under lasting ice and, consequently, breeding sites for most bird species were not available. At the same time, a high diversity of habitats was accessible in the subtropical and tropical zones providing breeding grounds and refugia for birds. As a result of long-term climatic oscillations, the migration systems of birds developed. When populations of birds concentrated in refugia during ice ages, genetic differentiation and gene flow between populations from distinct areas was favored. In the present study, we explored the current genetic status of populations of the migratory European bee-eater. We included samples from the entire Palearctic-African distribution range and analyzed them via mitochondrial and nuclear DNA markers. DNA data indicated high genetic connectivity and panmixia between populations from Europe, Asia and Africa. Negative outcomes of Fu’s Fs and Tajima’s D tests point to recent expansion events of the European bee-eater. Speciation of Merops apiaster started during the Pliocene around three million years ago (Mya), with the establishment of haplotype lineages dated to the Middle Pleistocene period circa 0.7 Mya. M. apiaster, which breed in Southern Africa are not distinguished from their European counterparts, indicating a recent separation event. The diversification process of the European bee-eater was influenced by climatic variation during the late Tertiary and Quaternary. Bee-eaters must have repeatedly retracted to refugia in the Mediterranean and subtropical Africa and Asia during ice ages and expanded northwards during warm periods. These processes favored genetic differentiation and repeated lineage mixings, leading to a genetic panmixia, which we still observe today.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.