A bird's ground speed is influenced by the wind conditions it encounters. Wind conditions, although variable, are not entirely random. Instead, wind exhibits persistent spatial and temporal dynamics described by the general circulation of the atmosphere. As such, in certain geographical areas wind's assistance (or hindrance) on migratory flight is also persistent, being dependent upon the bird's migratory direction in relation to prevailing wind conditions. We propose that, considering the western migration route of nocturnal migrants through Europe, winds should be more supportive in spring than in autumn. Thus, we expect higher ground speeds, contributing to higher overall migration speeds, in spring. To test whether winds were more supportive in spring than autumn, we quantified monthly wind conditions within western Europe relative to the seasonal direction of migration using 30 years (1978–2008) of wind data from the NCEP/NCAR Reanalysis dataset. We found that supporting winds were significantly more frequent for spring migration compared to autumn and up to twice as frequent at higher altitudes. We then analyzed three years (2006–2008) of nocturnal migratory ground speeds measured with radar in the Netherlands which confirmed higher ground speeds in spring than autumn. This seasonal difference in ground speed suggests a 16.9% increase in migration speed from autumn to spring. These results stress the importance of considering the specific wind conditions experienced by birds when interpreting migration speed. We provide a simple methodological approach enabling researchers to quantify regional wind conditions for any geographic area and time period of interest.
The role of polymorphonuclear granulocytes (PMNs) was studied in a model of anti-GBM nephritis in mice, in which PMN depletion was induced by total body irradiation of 7.5 Gy. Both in complement-normal B10.D2 new and in C5-deficient B10.D2 old mice, PMN depletion completely prevented the albuminuria occurring after injection of low doses of anti-GBM serum, and severely depressed the albuminuria after injection of high doses. In immunofluorescence, glomerular deposition of antibody and C3 was similar to that in control mice. The glomerular influx of PMNs in both the complement-normal and C5-deficient controls was inhibited to 10% or less of control values. Fibrin deposition or necrosis did not occur. Injection of F(ab')2 fragments of the anti-GBM antibody in non-irradiated mice caused only limited PMN influx and reduced the albuminuria to physiological levels, although the binding of 125I labeled F(ab')2 fragments to the glomeruli was as high as 82% of that of the complete antibody. We conclude that the albuminuria in this model is Fc-dependent and largely, if not completely, dependent on the influx of PMNs in the glomeruli. Among the many experimental models of anti-GBM nephritis, this is the first one in which the heterologous phase is complement-independent but PMN-dependent.
Billions of organisms travel through the air, influencing population dynamics, community interactions, ecosystem services and our lives in many different ways. Yet monitoring these movements are technically very challenging. During the last few decades, radars have increasingly been used to study the aerial movements of birds, bats and insects, yet research efforts have often been local and uncoordinated between research groups. However, a network of operational weather radars is continuously recording atmospheric conditions all over Europe and these hold enormous potential for coordinated, continental-scale studies of the aerial movements of animals. The European Network for the Radar surveillance of Animal Movement (ENRAM) is a new e-COST research network aiming exactly at exploring this potential. The main objective of ENRAM is to merge expertise to utilize weather radars to monitor the aerial movement of animals across Europe for a broad range of stakeholders at an unprecedented scale and enable researchers to study the causes and consequences of movement. In this paper we describe the aims of ENRAM in more detail and the challenges researchers will address, provide an overview of aero-ecological studies using radar, and present some of the opportunities that a large sensor network can provide for movement ecology research.
The aerosphere is utilized by billions of birds, moving for different reasons and from short to great distances spanning tens of thousands of kilometres. The aerosphere, however, is also utilized by aviation which leads to increasing conflicts in and around airfields as well as en‐route. Collisions between birds and aircraft cost billions of euros annually and, in some cases, result in the loss of human lives. Simultaneously, aviation has diverse negative impacts on wildlife. During avian migration, due to the sheer numbers of birds in the air, the risk of bird strikes becomes particularly acute for low‐flying aircraft, especially during military training flights. Over the last few decades, air forces across Europe and the Middle East have been developing solutions that integrate ecological research and aviation policy to reduce mutual negative interactions between birds and aircraft. In this paper we 1) provide a brief overview of the systems currently used in military aviation to monitor bird migration movements in the aerosphere, 2) provide a brief overview of the impact of bird strikes on military low‐level operations, and 3) estimate the effectiveness of migration monitoring systems in bird strike avoidance. We compare systems from the Netherlands, Belgium, Germany, Poland and Israel, which are all areas that Palearctic migrants cross twice a year in huge numbers. We show that the en‐route bird strikes have decreased considerably in countries where avoidance systems have been implemented, and that consequently bird strikes are on average 45% less frequent in countries with implemented avoidance systems in place. We conclude by showing the roles of operational weather radar networks, forecast models and international and interdisciplinary collaboration to create safer skies for aviation and birds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.