Critical illness is often associated with reduced TSH and thyroid hormone secretion as well as marked changes in peripheral thyroid hormone metabolism, resulting in low serum T(3) and high rT(3) levels. To study the mechanism(s) of the latter changes, we determined serum thyroid hormone levels and the expression of the type 1, 2, and 3 iodothyronine deiodinases (D1, D2, and D3) in liver and skeletal muscle from deceased intensive care patients. To study mechanisms underlying these changes, 65 blood samples, 65 liver, and 66 skeletal muscle biopsies were obtained within minutes after death from 80 intensive care unit patients randomized for intensive or conventional insulin treatment. Serum thyroid parameters and the expression of tissue D1-D3 were determined. Serum TSH, T(4), T(3), and the T(3)/rT(3) ratio were lower, whereas serum rT(3) was higher than in normal subjects (P < 0.0001). Liver D1 activity was down-regulated and D3 activity was induced in liver and skeletal muscle. Serum T(3)/rT(3) ratio correlated positively with liver D1 activity (P < 0.001) and negatively with liver D3 activity (ns). These parameters were independent of the type of insulin treatment. Liver D1 and serum T(3)/rT(3) were highest in patients who died from severe brain damage, intermediate in those who died from sepsis or excessive inflammation, and lowest in patients who died from cardiovascular collapse (P < 0.01). Liver D3 showed an opposite relationship. Acute renal failure requiring dialysis and need of inotropes were associated with low liver D1 activity (P < 0.01 and P = 0.06) and high liver D3 (P < 0.01) and skeletal muscle D3 (P < 0.05) activity. Liver D1 activity was negatively correlated with plasma urea (P = 0.002), creatinine (P = 0.06), and bilirubin (P < 0.0001). D1 and D3 mRNA levels corresponded with enzyme activities (both P < 0.001), suggesting regulation of the expression of both deiodinases at the pretranslational level. This is the first study relating tissue deiodinase activities with serum thyroid hormone levels and clinical parameters in a large group of critically ill patients. Liver D1 is down-regulated and D3 (which is not present in liver and skeletal muscle of healthy individuals) is induced, particularly in disease states associated with poor tissue perfusion. These observed changes, in correlation with a low T(3)/rT(3) ratio, may represent tissue-specific ways to reduce thyroid hormone bioactivity during cellular hypoxia and contribute to the low T(3) syndrome of severe illness.
Single nucleotide polymorphisms (SNPs) in genes involved in thyroid hormone metabolism may affect thyroid hormone bioactivity. We investigated the occurrence and possible effects of SNPs in the deiodinases (D1-D3), the TSH receptor (TSHR), and the T(3) receptor beta (TR beta) genes. SNPs were identified in public databases or by sequencing of genomic DNA from 15 randomly selected subjects (30 alleles). Genotypes for the identified SNPs were determined in 156 healthy blood donors and related to plasma T(4), free T(4), T(3), rT(3), and TSH levels. Eight SNPs of interest were identified, four of which had not yet been published. Three are located in the 3'-untranslated region: D1a-C/T (allele frequencies, C = 66%, T = 34%), D1b-A/G (A = 89.7%, G = 10.3%), and D3-T/G (T = 85.5%, G = 14.2%). Four are missense SNPs: D2-A/G (Thr92Ala, Thr = 61.2%, Ala = 38.8%), TSHRa-G/C (Asp36His, Asp = 99.4%, His = 0.6%), TSHRb-C/A (Pro52Thr, Pro = 94.2%, Thr = 5.8%), and TSHRc-C/G (Asp727Glu, Asp = 90.7%, Glu = 9.3%). One is a silent SNP: TR beta-T/C (T = 96.8%, C = 3.2%). D1a-T was associated in a dose-dependent manner with a higher plasma rT(3) [CC, 0.29 +/- 0.01; CT, 0.32 +/- 0.01; and TT, 0.34 +/- 0.02 nmol/liter (mean +/- SE); P = 0.017], a higher plasma rT(3)/T(4) (P = 0.01), and a lower T(3)/rT(3) (P = 0.003) ratio. The D1b-G allele was associated with lower plasma rT(3)/T(4) (P = 0.024) and with higher T(3)/rT(3) (P = 0.08) ratios. TSHRc-G was associated with a lower plasma TSH (CC, 1.38 +/- 0.07, vs. GC, 1.06 +/- 0.14 mU/liter; P = 0.04), and with lower plasma TSH/free T(4) (P = 0.06), TSH/T(3) (P = 0.06), and TSH/T(4) (P = 0.08) ratios. No associations with TSH and iodothyronine levels were found for the other SNPs. We have analyzed eight SNPs in five thyroid hormone pathway genes and found significant associations of three SNPs in two genes (D1, TSHR) with plasma TSH or iodothyronine levels in a normal population.
In critically ill patients who required more than 5 d of intensive care, rT3 and T3/rT3 were already prognostic for survival on d 1. On d 5, T4, T3, but also TSH levels are higher in patients who will survive. Serum rT3 and T3/rT3 were correlated with postmortem tissue deiodinase activities.
The purpose of this study was first to clarify postnatal trends in sera T(4), free T(4) (FT(4)), T(4)-binding globulin, TSH, T(3), rT(3), and T(4) sulfate levels in cord and at 7, 14, and 28 d in groups of preterm infants at 23-27 wk (n = 101), 28-30 wk (n = 196), and 31-34 (n = 253) wk gestation, and second to compare these trends to those of term infants and also with cord sera levels of equivalent gestational ages (n = 812; 23-42 wk gestation). In all preterm groups, TSH and rT(3) decrease to below, T(4)-binding globulin increases to within, and T(3) and T(4) sulfate increase to above cord levels of equivalent gestational age. Term infants are hyperthyroxinemic relative to cord and nonpregnant adult levels of T(4). Postnatal T(4) increases are attenuated in 31- to 34-wk infants, absent in 28- to 30-wk infants (although levels are equivalent to gestational age), and crucially reversed in 23- to 27-wk infants. This immature group is hypothyroxinemic relative to other groups and to cord levels of equivalent gestational age. Compared with term infants, postnatal FT(4) increases are lower in 31- to 34-wk infants, attenuated in 28- to 30-wk infants, and absent in 23- to 27-wk infants. The 23- to 27-wk group is distinctive; they are hypothyroxinemic on T(4) levels, yet FT(4) levels are within the cord levels of equivalent gestational age.
Thyroid hormone is essential for fetal and neonatal development in particular of the brain, but little is known about regulation of fetal thyroid hormone levels throughout human gestation. The purpose of this study was to clarify developmental trends and interrelationships among T(4), free T(4) (FT4), thyroxine-binding globulin (TBG), TSH, T(3), rT(3), and T(4) sulfate (T4S) levels in cord and fetal blood sera (n = 639, 15-42 wk gestation) and correlate infant levels (23-42 wk gestation) to maternal values (n = 428, 16-45 yr) and those of nonpregnant women (n = 233, 16-46 yr). In cord and fetal serum, T(4), T(3), and TBG levels increase with gestation until term; TSH, FT4, T4S, and rT(3) levels increase and peak in the late second/early third trimester and then decline to term; T(4)/TBG ratios increase until late second trimester and plateau to term. Term cord sera TSH, TBG, and all iodothyronine levels, except T(3), are higher than nonpregnant women. In the third trimester, cord serum FT4, TSH, rT(3), and T4S levels are also higher than corresponding maternal levels, but T(4), T(3), and TBG levels are lower than maternal values. The late second/early third trimester is a critical transition period in fetal thyroid hormone metabolism, which may be interrupted by preterm birth and contribute to postnatal thyroid dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.