Background The coronavirus disease 2019 (COVID‐19) has evolved into a pandemic infectious disease transmitted by the severe acute respiratory syndrome coronavirus (SARS‐CoV‐2). Allergists and other healthcare providers (HCPs) in the field of allergies and associated airway diseases are on the front line, taking care of patients potentially infected with SARS‐CoV‐2. Hence, strategies and practices to minimize risks of infection for both HCPs and treated patients have to be developed and followed by allergy clinics. Method The scientific information on COVID‐19 was analysed by a literature search in MEDLINE, PubMed, the National and International Guidelines from the European Academy of Allergy and Clinical Immunology (EAACI), the Cochrane Library, and the internet. Results Based on the diagnostic and treatment standards developed by EAACI, on international information regarding COVID‐19, on guidelines of the World Health Organization (WHO) and other international organizations, and on previous experience, a panel of experts including clinicians, psychologists, IT experts, and basic scientists along with EAACI and the “Allergic Rhinitis and its Impact on Asthma (ARIA)” initiative have developed recommendations for the optimal management of allergy clinics during the current COVID‐19 pandemic. These recommendations are grouped into nine sections on different relevant aspects for the care of patients with allergies. Conclusions This international Position Paper provides recommendations on operational plans and procedures to maintain high standards in the daily clinical care of allergic patients while ensuring the necessary safety measures in the current COVID‐19 pandemic.
The non-invasive detection of insulinomas remains a diagnostic problem that is not solved by means of somatostatin receptor scintigraphy. We investigated the biokinetics and specificity of uptake and degradation of the incretin hormone glucagon-like peptide-1 (GLP-1) in a rat insulinoma cell line (RINm5F) in order to ascertain whether radiolabelled GLP-1 may be suitable for specific visualisation of insulinomas in vivo. GLP-1 (7-36)amide was radioiodinated according to the iodogen method. The specificity of the uptake of [(125)I]GLP-1(7-36)amide by RINm5F cells was investigated. Degradation products of GLP-1 (7-36)amide in the cell medium were purified by HPLC. Their masses and amino acid sequences were determined by (252)Cf-plasma desorption mass spectrometry. Lysosomal degradation was inhibited and after differential centrifugation the amount of radiotracer incorporated into lysosomes was determined. Biodistribution studies were performed in a rat insulinoma model (NEDH rats and RINm5F cells) with [(123)I]GLP-1(7-36)amide and its more stable agonist [(123)I]exendin 3. The uptake of radiotracer into insulinoma cells reached a maximum within 5 min. It was inhibited by an excess of unlabelled peptide. [(125)I]GLP-1(7-36)amide accumulated in the cells if lysosomal degradation was inhibited. Degradation products of the peptide were found in the cell medium. We determined their mass and derived their amino acid sequence. Radiolabelling of exendin 3 was more difficult than that of GLP-1 because of the lack of tyrosine in its primary structure. Biodistribution studies showed rapid blood clearance and uptake of the radiotracer into the tumour and the pancreas. It was also possible to detect insulinomas in an animal model by external scintigraphy using radioiodinated GLP-1 (7-36)amide and exendin 3. GLP-1 (7-36)amide is specifically internalised into insulinoma cells by a receptor-mediated mechanism. Our results demonstrate that GLP-1 receptor-directed scintigraphy may be a new method for the detection of insulinomas in vivo. Due to the short half-life of GLP-1, its more stable analogue exendin 3 may better suit this purpose in vivo.
Background In 2015, the German Federal Ministry of Education and Research initiated a large data integration and data sharing research initiative to improve the reuse of data from patient care and translational research. The Observational Medical Outcomes Partnership (OMOP) common data model and the Observational Health Data Sciences and Informatics (OHDSI) tools could be used as a core element in this initiative for harmonizing the terminologies used as well as facilitating the federation of research analyses across institutions. Objective To realize an OMOP/OHDSI-based pilot implementation within a consortium of eight German university hospitals, evaluate the applicability to support data harmonization and sharing among them, and identify potential enhancement requirements. Methods The vocabularies and terminological mapping required for importing the fact data were prepared, and the process for importing the data from the source files was designed. For eight German university hospitals, a virtual machine preconfigured with the OMOP database and the OHDSI tools as well as the jobs to import the data and conduct the analysis was provided. Last, a federated/distributed query to test the approach was executed. Results While the mapping of ICD-10 German Modification succeeded with a rate of 98.8% of all terms for diagnoses, the procedures could not be mapped and hence an extension to the OMOP standard terminologies had to be made.
The pharmacokinetic parameters of etoposide were established in 35 patients receiving the drug parenterally within the framework of different polychemotherapy protocols. A total of 62 data for 24-h kinetics were analysed. After sample extraction and high-performance liquid chromatography (HPLC) or thin-layer chromatographic (TLC) separation, etoposide was measured by means of [252Cf]-plasma desorption mass spectrometry (PDMS). This highly specific detection system proved to be very practicable and reproducible. The present study comprised two parts that were absolutely comparable in terms of clinical and pharmacokinetic parameters. In part II of the study, sensitivity was improved by modifying the analytical technique. After the exclusion of patients who had previously been given cisplatin or who exhibited renal impairment and of one patient who showed extremely high levels of alkaline phosphatase, gamma-GT and SGPT, the mean values calculated for the pharmacokinetic parameters evaluated were: beta-elimination half-life (t 1/2 beta), 4.9 +/- 1.2 h; mean residence time (MRT), 6.7 +/- 1.4 h; area under the concentration-time curve (AUC), 5.43 +/- 1.74 mg min ml-1; volume of distribution at steady state (Vdss), 6.8 +/- 2.7 l/m2; and clearance (Cl), 18.8 +/- 5.3 ml min-1 m-2. The pharmacokinetic parameters were correlated with 12 different demographic or biochemical conditions. Impaired renal function, previous application of cisplatin and the age of patients were found to influence etoposide disposition to a statistically significant extent. We suggest that the dose of etoposide should be reduced in elderly patients and/or in individuals with impaired renal function, especially in those exhibiting general risk factors such as reduced liver function with regard to the polychemotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.