Lymphocyte-specific interferon regulatory factor (LSIRF) (now called IRF4) is a transcription factor expressed only in lymphocytes. Mice deficient in IRF4 showed normal distribution of B and T lymphocyes at 4 to 5 weeks of age but developed progressive generalized lymphadenopathy. IRF4-deficient mice exhibited a profound reduction in serum immunoglobulin concentrations and did not mount detectable antibody responses. T lymphocyte function was also impaired in vivo; these mice could not generate cytotoxic or antitumor responses. Thus, IRF4 is essential for the function and homeostasis of both mature B and mature T lymphocytes.
The absence of CTLA-4 results in uncontrolled T cell proliferation. The T cell receptor-specific kinases FYN, LCK, and ZAP-70 as well as the RAS pathway were found to be activated in T cells of Ctla-4-/- mutant mice. In addition, CTLA-4 specifically associated with the tyrosine phosphatase SYP, an interaction mediated by the SRC homology 2 (SH2) domains of SYP and the phosphotyrosine sequence Tyr-Val-Lys-Met within the CTLA-4 cytoplasmic tail. The CTLA-4-associated SYP had phosphatase activity toward the RAS regulator p52SHC. Thus, the RAS pathway and T cell activation through the T cell receptor are regulated by CTLA-4-associated SYP.
Current models suggest that T cells that receive only signal-1 through antigenic stimulation of the T cell receptor (TCR) become anergic, but will mount an immune response when a costimulatory signal-2 is provided. Using mice deficient for an important costimulatory molecule, CD28, we show that a transient signal-1 alone, either through infection with an abortively replicating virus, or through injection of viral peptide, anergizes CD8+ T cells, demonstrating the biological relevance of T cell anergy in vivo. However, in the absence of CD28, continued presence of signal-1 alone, either through prolonged viral replication or repeated injection of peptide, prevents the induction of anergy and generates a functional T cell response in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.