Genomics and genome editing promise enormous opportunities for crop improvement and elementary research. Precise modification in the specific targeted location of a genome has profited over the unplanned insertional events which are generally accomplished employing unadventurous means of genetic modifications. The advent of new genome editing procedures viz; zinc finger nucleases (ZFNs), homing endonucleases, transcription activator like effector nucleases (TALENs), Base Editors (BEs), and Primer Editors (PEs) enable molecular scientists to modulate gene expressions or create novel genes with high precision and efficiency. However, all these techniques are exorbitant and tedious since their prerequisites are difficult processes that necessitate protein engineering. Contrary to first generation genome modifying methods, CRISPR/Cas9 is simple to construct, and clones can hypothetically target several locations in the genome with different guide RNAs. Following the model of the application in crop with the help of the CRISPR/Cas9 module, various customized Cas9 cassettes have been cast off to advance mark discrimination and diminish random cuts. The present study discusses the progression in genome editing apparatuses, and their applications in chickpea crop development, scientific limitations, and future perspectives for biofortifying cytokinin dehydrogenase, nitrate reductase, superoxide dismutase to induce drought resistance, heat tolerance and higher yield in chickpea to encounter global climate change, hunger and nutritional threats.
Climate change has posed a challenge for food security all over the world in the form of fluctuating crop yields and novel disease outbreaks in plants. Human society’s overdependence on a few food crops does not seem a wise precedence. There are numerous underutilized/orphan/neglected legumes growing in the Indian desert regions that can come to the rescue and act as balanced and sustainable sources of nutrients and health-benefitting nutraceuticals. However, challenges such as low plant yield, unidentified metabolic pathways and off-flavor in the food products derived from them prevent the realization of their full potential. Conventional breeding techniques are too slow to achieve the desired modifications and cater to the sharply rising demand for functional foods. The novel gene editing tools like CRISPR-Cas provide more precise tool to manipulate the target genes with or without introduction of foreign DNA and therefore, have better chances to be accepted by governments and societies. The current article reports some of the relevant ‘gene editing’ success stories with respect to nutraceutical and flavor profiles in the popular legumes. It highlights gaps and future potential, along with areas requiring caution, in underutilized edible legumes of the Indian (semi) arid regions like
Prosopis cineraria
,
Acacia senegal
and
Cyamopsis tetragonoloba
.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.