Titanium alloys are advanced lightweight materials, indispensable for many critical applications1,2. The mainstay of the titanium industry is the α–β titanium alloys, which are formulated through alloying additions that stabilize the α and β phases3–5. Our work focuses on harnessing two of the most powerful stabilizing elements and strengtheners for α–β titanium alloys, oxygen and iron1–5, which are readily abundant. However, the embrittling effect of oxygen6,7, described colloquially as ‘the kryptonite to titanium’8, and the microsegregation of iron9 have hindered their combination for the development of strong and ductile α–β titanium–oxygen–iron alloys. Here we integrate alloy design with additive manufacturing (AM) process design to demonstrate a series of titanium–oxygen–iron compositions that exhibit outstanding tensile properties. We explain the atomic-scale origins of these properties using various characterization techniques. The abundance of oxygen and iron and the process simplicity for net-shape or near-net-shape manufacturing by AM make these α–β titanium–oxygen–iron alloys attractive for a diverse range of applications. Furthermore, they offer promise for industrial-scale use of off-grade sponge titanium or sponge titanium–oxygen–iron10,11, an industrial waste product at present. The economic and environmental potential to reduce the carbon footprint of the energy-intensive sponge titanium production12 is substantial.
Intentional and unintentional doping in semiconductor nanowires undoubtedly have significant impact on the device performance. However, spatially resolved precise determination of dopant concentration is challenging due to insufficient sensitivity and resolution of conventional techniques. In this paper, quantitative 3D distribution of Si and Zn dopants in planar GaAs nanowires and their interface with AlGaAs film underneath are obtained by using a unique atom probe tomography technique, providing critical insights for the growth and potential applications of these nanowires.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.