We report the plating and stripping of calcium metal at room temperature in a mixture of ethylene carbonate (EC) and propylene carbonate (PC) solvents using calcium tetrafluoroborate (Ca(BF4)2) as the salt. Calcium is reversibly deposited and removed over several cycles, with associated plating–stripping efficiencies of >95%. Thin layers (∼20 μm) of crystalline calcium are present as the deposits, with a stable solid electrolyte interface (SEI) forming. This work opens opportunities to realize redox active Ca metal electrodes using commercially available alkyl carbonate solvents.
A new approach is reported to fabricate micropillar arrays on transparent surfaces by employing the light‐induced self‐writing technique. A periodic array of microscale optical beams is transmitted through a thin film of photo‐crosslinking acrylate resin. Each beam undergoes self‐lensing associated to photopolymerization‐induced changes in the refractive index of the medium, which counters the beam's natural tendency to diverge over space. As a result, a microscale pillar grows along each beam's propagation path. Concurrent, parallel self‐writing of micropillars leads to the prototyping of micropillar‐based arrays, with the capability to precisely vary the pillar diameter and inter‐spacing. The arrays are spray coated with a thin layer of polytetrafluoroethylene (PTFE) nanoparticles to create large‐area superhydrophobic surfaces with water contact angles greater than 150° and low contact angle hysteresis. High transparency is achieved over the entire range of micropillar arrays explored. The arrays are also mechanically durable and robust against abrasion. This is a scalable, straightforward approach toward structure‐tunable micropillar arrays for functional surfaces and anti‐wetting applications.
Microfiber optic array structures are fabricated and employed as an optical structure overlaying a frontcontact silicon solar cell. The arrays are synthesized through light-induced self-writing in a photo-crosslinking acrylate resin, which produces periodically spaced, high-aspect-ratio, and vertically aligned tapered microfibers deposited on a transparent substrate. The structure is then positioned over and sealed onto the solar cell surface. Their fiber optic properties enable collection of non-normal incident light, allowing the structure to mitigate shading loss through the redirection of incident light away from contacts and toward the solar cell. Angle-averaged external quantum efficiency increases nominally by 1.61%, resulting in increases in shortcircuit current density up to 1.13 mA/cm 2 . This work demonstrates a new approach to enhance light collection and conversion using a scalable, straightforward, light-based additive manufacturing process.
Fabrication of superhydrophobic materials using incumbent techniques involves several processing steps and is therefore either quite complex, not scalable, or often both. Here, the development of superhydrophobic surface-patterned polymer–TiO 2 composite materials using a simple, single-step photopolymerization-based approach is reported. The synergistic combination of concurrent, periodic bump-like pattern formation created using irradiation through a photomask and photopolymerization-induced nanoparticle (NP) phase separation enables the development of surface textures with dual-scale roughness (micrometer-sized bumps and NPs) that demonstrate high water contact angles, low roll-off angles, and desirable postprocessability such as flexibility, peel-and-stick capability, and self-cleaning capability. The effect of nanoparticle concentration on surface porosity and consequently nonwetting properties is discussed. Large-area fabrication over an area of 20 cm 2 , which is important for practical applications, is also demonstrated. This work demonstrates the capability of polymerizable systems to aid in the organization of functional polymer–nanoparticle surface structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.