This abstract proposes an approach towards goal-oriented modeling of the detection and modeling complex social phenomena in multiparty discourse in an online political strategy game.
We developed a two-tier approach that first encodes sociolinguistic behavior as linguistic features then use reinforcement learning to estimate the advantage afforded to any player.
In the first tier, sociolinguistic behavior, such as Friendship and Reasoning, that speakers use to influence others are encoded as linguistic features to identify the persuasive strategies applied by each player in simultaneous two-party dialogues. In the second tier, a reinforcement learning approach is used to estimate a graph-aware reward function to quantify the advantage afforded to each player based on their standing in this multiparty setup. We apply this technique to the game Diplomacy, using a dataset comprising of over 15,000 messages exchanged between 78 users. Our graph-aware approach shows robust performance compared to a context-agnostic setup.
The rapid growth of information and communication technologies in recent years, and the different forms of digital connectivity, have profoundly affected how news is generated and consumed. Digital traces and computational methods offer new opportunities to model and track the provenance of news. This project is the first study to characterize and predict how prominent news outlets make edits to news frames and their implications for geopolitical relationships and attitudes. We evaluate the feasibility of training few-shot learners on the editing patterns of articles discussing different countries, for understanding their wider implications in preserving or damaging geopolitical relationships.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.