This paper aims to discuss the key accomplishments and further prospects of active-matrix (AM) quantum-dot (QD) light-emitting diodes (QLEDs) display. We present an overview and state-of-the-art of QLEDs as a frontplane and non-Si-based thin-film transistors (TFTs) as a backplane to meet the requirements for the next-generation displays, such as flexibility, transparency, low power consumption, fast response, high efficiency, and operational reliability. After a brief introduction, we first review the research on non-Si-based TFTs using metal oxides, transition metal dichalcogenides, and semiconducting carbon nanotubes as the driving unit of display devices. Next, QLED technologies are analyzed in terms of the device structure, device engineering, and QD patterning technique to realize high-performance, full-color AM-QLEDs. Lastly, recent research on the monolithic integration of TFT–QLED is examined, which proposes a new perspective on the integrated device. We anticipate that this review will help the readership understand the fundamentals, current state, and issues on TFTs and QLEDs for future AM-QLED displays.
The superior optical properties of colloidal quantum dots (QDs) have garnered significant broad interest from academia and industry owing to their successful application in self‐emitting QD‐based light‐emitting diodes (QLEDs). In particular, active research is being conducted on QLEDs with top‐emission device architectures (TQLEDs) owing to their advantages such as easy integration with conventional backplanes, high color purity, and excellent light extraction. However, due to the complicated optical phenomena and their highly sensitive optoelectrical properties to experimental variations, TQLEDs cannot be optimized easily for practical use. This review summarizes previous studies that have investigated top‐emitting device structures and discusses ways to advance the performance of TQLEDs. First, theories relevant to the optoelectrical properties of TQLEDs are introduced. Second, advancements in device optimization are presented, where the underlying theories for each are considered. Finally, multilateral strategies for TQLEDs to enable their wider application to advanced industries are discussed. This work believes that this review can provide valuable insights for realizing commercial TQLEDs applicable to a broad range of applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.