Proteins that drive processes like clathrin-mediated endocytosis (CME) are expressed at various copy numbers within a cell, from hundreds (e.g. auxilin) to millions (e.g. clathrin). Between cell types with identical genomes, copy numbers further vary significantly both in absolute and relative abundance. These variations contain essential information about each protein's function, but how significant are these variations and how can they be quantified to infer useful functional behavior? Here, we address this by quantifying the stoichiometry of proteins involved in the CME network. We find robust trends across three cell types in proteins that are sub- vs super-stoichiometric in terms of protein function, network topology (e.g. hubs), and abundance. To perform this analysis, we first constructed the interface resolved network of 82 proteins involved in CME in mammals, plus lipid and cargo binding partners, totaling over 600 specific binding interactions. Our model solves for stoichiometric balance by optimizing each copy of a protein interface to match up to its partner interfaces, keeping the optimized copies as close as possible to observed copies. We find highly expressed, structure-forming proteins such as actin and clathrin do tend to be super-stoichiometric, or in excess of their partners, but they are not the most extreme cases. We test sensitivity of network stoichiometry to protein removal and find that hub proteins tend to be less sensitive to removal of any single partner, thus acting as buffers that compensate dosage changes. As expected, tightly coupled protein pairs (e.g. CAPZA2 and CAPZB) are strongly correlated. Unexpectedly, removal of functionally similar cargo adaptor proteins produces widely variable levels of disruption to the network stoichiometry. Our results predict that knockdown of the adaptor protein DAB2 will globally impact the stoichiometry of most other cargo adaptor proteins in Hela cells, with significantly less impact in fibroblast cells. This inexpensive analysis can be applied to any protein network, synthesizing disparate sources of biological data into a relatively simple and intuitive model of binding stoichiometry that can aid in dynamical modeling and experimental design.
Proteins that drive processes like clathrin-mediated endocytosis (CME) are expressed at copy numbers within a cell and across cell types varying from hundreds (e.g. auxilin) to millions (e.g. clathrin). These variations contain important information about function, but without integration with the interaction network, they cannot capture how supply and demand for each protein depends on binding to shared and distinct partners. Here we construct the interface-resolved network of 82 proteins involved in CME and establish a metric, a stoichiometric balance ratio (SBR), that quantifies whether each protein in the network has an abundance that is sub- or super-stoichiometric dependent on the global competition for binding. We find that highly abundant proteins (like clathrin) are super-stoichiometric, but that not all super-stoichiometric proteins are highly abundant, across three cell populations (HeLa, fibroblast, and neuronal synaptosomes). Most strikingly, within all cells there is significant competition to bind shared sites on clathrin and the central AP-2 adaptor by other adaptor proteins, resulting in most being in excess supply. Our network and systematic analysis, including response to perturbations of network components, show how competition for shared binding sites results in functionally similar proteins having widely varying stoichiometries, due to variations in both abundance and their unique network of binding partners.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.