Bis(2-methoxyethyl)aminosulfur trifluoride, (CH3OCH2CH2)2NSF3 (Deoxo-Fluor reagent), is a new deoxofluorinating agent that is much more thermally stable than DAST (C2H5)2NSF3 and its congeners. It is effective for the conversion of alcohols to alkyl fluorides, aldehydes/ketones to the corresponding gem-difluorides, and carboxylic acids to the trifluoromethyl derivatives with, in some cases, superior performance compared to DAST. The enhanced stability is rationalized on the basis of conformational rigidity imposed by a coordination of the alkoxy groups with the electron-deficient sulfur atom of the trifluoride.
We review the history of the South American summer monsoon (SASM) over the past ~2000 yr based on high-resolution stable isotope proxies from speleothems, ice cores and lake sediments. Our review is complemented by an analysis of an isotope-enabled atmospheric General Circulation Model (GCM) for the past 130 yr. Proxy records from the monsoon belt in the tropical Andes and SE Brazil show a very coherent behavior over the past 2 millennia with significant decadal to multidecadal variability superimposed on large excursions during three key periods, the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA) and the Current Warm Period (CWP). We interpret these three periods as times when the SASM's mean state was significantly weakened (MCA and CWP) and strengthened (LIA), respectively. During the LIA each of the proxy archives considered contains the most negative δ<sup>18</sup>O values recorded during the entire record length. On the other hand the monsoon strength is currently rather weak in a 2000-yr historical perspective, rivaled only by the low intensity during the MCA. Our climatic interpretation of these archives is consistent with our isotope-based GCM analysis, which suggests that these sites are sensitive recorders of large-scale monsoon variations. <br><br> We hypothesize that these centennial-scale climate anomalies were at least partially driven by temperature changes in the Northern Hemisphere and in particular over the North Atlantic, leading to a latitudinal displacement of the ITCZ and a change in monsoon intensity over the tropical continent. This interpretation is supported by several independent proxy archives and modeling studies. Although ENSO is the main forcing for δ<sup>18</sup>O variability over tropical South America on interannual time scales, our results suggest that its influence may be significantly modulated by North Atlantic climate variability on longer time scales. <br><br> Finally our analyses indicate that isotopic proxies, because of their ability to integrate climatic information on large spatial scales, could complement more traditional proxies such as tree rings or historical archives. Future climate reconstruction efforts could potentially benefit from including isotopic proxies as large-scale predictors in order to better constrain past changes in the atmospheric circulation
Deposition technology of transparent conducting oxide (TCO) thin films is critical for high performance of optoelectronic devices. Solution-based fabrication methods can result in substantial cost reduction and enable broad applicability of the TCO thin films. Here we report a simple and highly effective solution process to fabricate indium-tin oxide (ITO) thin films with high uniformity, reproducibility, and scalability. The ITO films are highly transparent (90.2%) and conductive (ρ = 7.2 × 10(-4) Ω·cm) with the highest figure of merit (1.19 × 10(-2) Ω(-1)) among all the solution-processed ITO films reported to date. The high transparency and figure of merit, low sheet resistance (30 Ω/sq), and roughness (1.14 nm) are comparable with the benchmark properties of dc sputtering and can meet the requirements for most practical applications.
We present a systematic study on the possible mechanisms of hydrogen spillover onto several carbon-based materials using density functional theory (DFT). Adsorption and diffusion of atomic hydrogen on a graphene sheet, single-walled carbon nanotubes, and a polyaromatic compound, hexabenzocoronene, were calculated, and the potential energies along the selected adsorption and diffusion minimum energy pathways were mapped out. We show that the migration of H atoms from a Pt cluster catalyst to the substrates is facile at ambient conditions with a small energy barrier, although the process is slightly endothermic, and that the H atoms can be either physisorbed or chemisorbed on carbon surfaces. Our results indicate that diffusion of H atoms in a chemisorbed state is energetically difficult since it requires C-H bond breaking and hydrogen spillover would occur likely via physisorption of H atoms. The curvature of the carbon materials is found to have a pronounced influence on the mobility of H atoms. The role of the "bridge" materials used in experiments is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.