The structure of the class C ampC 3lactam-ase (cephalosporinase) from Enterobacter cloacae strain P99 has been established by x-ray crystallography to 2-resolution and compared to a class A ,B-lactamase (penicillinase) struc- comparison of overall tertary folding shows that the cephalosporinase, more than the penicillinase, is broadly similar to the ancestral 3lactam-inhibited enzymes of bacterial cell wall synthesis. On this basis, it is proposed that the cephalosporinase is the older of the two 3lactamases, and, therefore, that a local refolding in the active site, rather than a simple point mutation, was required for the primordial class C &3-lactamase to evolve to the dass A -lactamase having an improved ability to catalyze the deacylation step of 3lactam hydrolysis.
Two clinically-important beta-lactam antibiotics, cephalothin and cefotaxime, have been observed by X-ray crystallography bound to the reactive Ser62 of the D-alanyl-D-alanine carboxypeptidase/transpeptidase of Streptomyces sp. R61. Refinement of the two crystal structures produced R factors for 3 sigma (F) data of 0.166 (to 1.8 A) and 0.170 (to 2.0 A) for the cephalothin and cefotaxime complexes, respectively. In each complex, a water molecule is within 3.1 and 3.6 A of the acylated beta-lactam carbonyl carbon atom, but is poorly activated by active site residues for nucleophilic attack and deacylation. This apparent lack of good stereochemistry for facile hydrolysis is in accord with the long half-lives of cephalosporin intermediates in solution (20-40 h) and the efficacy of these beta-lactams as inhibitors of bacterial cell wall synthesis. Different hydrogen binding patterns of the two cephalosporins to Thr301 are consistent with the low cefotaxime affinity of an altered penicillin-binding protein, PBP-2x, reported in cefotaxime-resistant strains of Streptococcus pneumoniae, and with the ability of mutant class A beta-lactamases to hydrolyze third-generation cephalosporins.
We have determined the structure of a human rhinovirus (HRV)-Fab complex by using cryoelectron microscopy and image reconstruction techniques. This is the first view of an intact human virus complexed with a monoclonal Fab (Fab17-IA) for which both atomic structures are known. The surface area on HRV type 14 (HRV14) in contact with Fab17-IA was approximately 500 A2 (5 nm2), which is much larger than the area that constitutes the NIm-IA epitope (on viral protein VP1) defined by natural escape mutants. From modeling studies and electrostatic potential calculations, charged residues outside the neutralizing immunogenic site IA (NIm-IA) were also predicted to be involved in antibody recognition. These predictions were confirmed by site-specific mutations and analysis of the Fab17-IA-HRV14 complex, along with knowledge of the crystallographic structures of HRV14 and Fab17-IA. The bound Fab17-IA reaches across a surface depression (the canyon) and meets a related Fab at the nearest icosahedral twofold axis. By adjusting the elbow angles of the bound Fab fragments from 162 degrees to 198 degrees, an intact antibody molecule can be easily modeled. This, along with aggregation and binding stoichiometry results, supports the earlier proposal that this antibody binds bivalently to the surface of HRV14 across icosahedral twofold axes. One prediction of this model, that the intact canyon-spanning immunoglobulin G molecule would block attachment of the virus to HeLa cells, was confirmed experimentally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.