Urban sound classification has been achieving remarkable progress and is still an active research area in audio pattern recognition. In particular, it allows to monitor the noise pollution, which becomes a growing concern for large cities.The contribution of this paper is two-fold. First, we present our DCASE 2020 task 5 winning solution [31] which aims at helping the monitoring of urban noise pollution. It achieves a macro-AUPRC of 0.82 / 0.62 for the coarse / fine classification on validation set. Moreover, it reaches accuracies of 89.7% and 85.41% respectively on ESC-50 and US8k datasets.Second, it is not easy to find a fair comparison and to reproduce the performance of existing models. Sometimes authors copy-pasting the results of the original papers which is not helping reproducibility. As a result, we provide a fair comparison by using the same input representation, metrics and optimizer to assess performances. We preserve data augmentation used by the original papers. We hope this framework could help evaluate new architectures in this field.For better reproducibility, the code is available on our GitHub repository [35].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.