Machine learning has been increasingly used for protein engineering. However, because the general sequence contexts they capture are not specific to the protein being engineered, the accuracy of existing machine learning algorithms is rather limited. Here, we report ECNet (evolutionary context-integrated neural network), a deep-learning algorithm that exploits evolutionary contexts to predict functional fitness for protein engineering. This algorithm integrates local evolutionary context from homologous sequences that explicitly model residue-residue epistasis for the protein of interest with the global evolutionary context that encodes rich semantic and structural features from the enormous protein sequence universe. As such, it enables accurate mapping from sequence to function and provides generalization from low-order mutants to higher-order mutants. We show that ECNet predicts the sequence-function relationship more accurately as compared to existing machine learning algorithms by using ~50 deep mutational scanning and random mutagenesis datasets. Moreover, we used ECNet to guide the engineering of TEM-1 β-lactamase and identified variants with improved ampicillin resistance with high success rates.
Selectional Preference (SP) is a commonly observed language phenomenon and proved to be useful in many natural language processing tasks. To provide a better evaluation method for SP models, we introduce SP-10K, a largescale evaluation set that provides human ratings for the plausibility of 10,000 SP pairs over five SP relations, covering 2,500 most frequent verbs, nouns, and adjectives in American English. Three representative SP acquisition methods based on pseudo-disambiguation are evaluated with SP-10K. To demonstrate the importance of our dataset, we investigate the relationship between SP-10K and the commonsense knowledge in ConceptNet5 and show the potential of using SP to represent the commonsense knowledge. We also use the Winograd Schema Challenge to prove that the proposed new SP relations are essential for the hard pronoun coreference resolution problem.
Protein engineering seeks to design proteins with improved or novel functions. Compared to rational design and directed evolution approaches, machine learning-guided approaches traverse the fitness landscape more effectively and hold the promise for accelerating engineering and reducing the experimental cost and effort. A critical challenge here is whether we are capable of predicting the function or fitness of unseen protein variants. By learning from the sequence and large-scale screening data of characterized variants, machine learning models predict functional fitness of sequences and prioritize new variants that are very likely to demonstrate enhanced functional properties, thereby guiding and accelerating rational design and directed evolution. While existing generative models and language models have been developed to predict the effects of mutation and assist protein engineering, the accuracy of these models is limited due to their unsupervised nature of the general sequence contexts they captured that is not specific to the protein being engineered. In this work, we propose ECNet, a deep-learning algorithm to exploit evolutionary contexts to predict functional fitness for protein engineering. Our method integrated local evolutionary context from homologous sequences that explicitly model residue-residue epistasis for the protein of interest, as well as the global evolutionary context that encodes rich semantic and structural features from the enormous protein sequence universe. This biologically motivated sequence modeling approach enables accurate mapping from sequence to function and provides generalization from low-order mutants to higher-orders. Through extensive benchmark experiments, we showed that our method outperforms existing methods on~50 deep mutagenesis scanning and random mutagenesis datasets, demonstrating its potential of guiding and expediting protein engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.