Purpose To develop a Fourier-transform based velocity-selective (VS) pulse train that offers improved robustness to B0/B1 inhomogeneity for non-contrast-enhanced cerebral MR angiography (MRA) at 3T. Methods VS pulse train I and II with different saturation bands are proposed to incorporate paired and phase cycled refocusing pulses. Their sensitivity to B0/B1 inhomogeneity was estimated through simulation and compared with a single refocused VS pulse train. The implementation was compared to standard time-of-flight (TOF) among 8 healthy subjects. Results In contrast to single refocused VS pulse train, the simulated VS profiles from proposed pulse trains indicate much improved immunity to field inhomogeneity in the brain at 3T. Successive application of two identical VS pulse trains yields a better suppression of static tissue at the cost of 20~30% signal loss within large vessels. Average relative contrast ratios of major cerebral arterial segments applying both pulse train I and II with two preparations are 0.81±0.06 and 0.81±0.05 respectively, significantly higher than 0.67±0.07 of TOF-MRA. VS MRA, in particular, the pulse train II with the narrower saturation band, depicts more small vessels with slower flow. Conclusion VS magnetization-prepared cerebral MRA was demonstrated among normal subjects on a 3T scanner.
Gadolinium (Gd)-based compounds and materials are the most commonly used magnetic resonance imaging (MRI) contrast agents in the clinic; however, safety concerns associated with their toxicities in the free ionic form have promoted the development of new generations of metal-free contrast agents. Here we report a supramolecular strategy to convert an FDA-approved anticancer drug, Pemetrexed (Pem), to a molecular hydrogelator with inherent chemical exchange saturation transfer (CEST) MRI signals. The rationally designed drug–peptide conjugate can spontaneously associate into filamentous assemblies under physiological conditions and consequently form theranostic supramolecular hydrogels for injectable delivery. We demonstrated that the local delivery and distribution of Pem–peptide nanofiber hydrogels can be directly assessed using CEST MRI in a mouse glioma model. Our work lays out the foundation for the development of drug-constructed theranostic supramolecular materials with an inherent CEST MRI signal that enables noninvasive monitoring of their in vivo distribution and drug release.
BACKGROUND The lack of effective treatments against the 2019 coronavirus disease (COVID‐19) has led to the exploratory use of convalescent plasma for treating COVID‐19. Case reports and case series have shown encouraging results. This study investigated SARS‐CoV‐2 antibodies and epidemiological characteristics in convalescent plasma donors, to identify criteria for donor selection. METHODS Recovered COVID‐19 patients, aged 18‐55 years, who had experienced no symptoms for more than 2 weeks, were recruited. Donor characteristics such as disease presentations were collected and SARS‐CoV‐2 N‐specific IgM, IgG, and S‐RBD‐specific IgG levels were measured by enzyme‐linked immunosorbent assay (ELISA). RESULTS Whereas levels of N‐specific IgM antibody declined after recovery, S‐RBD‐specific and N‐specific IgG antibodies increased after 4 weeks from the onset of symptoms, with no significant correlation to age, sex, or ABO blood type. Donors with the disease presentation of fever exceeding 38.5°C or lasting longer than 3 days exhibited higher levels of S‐RBD‐specific IgG antibodies at the time of donation. Of the 49 convalescent plasma donors, 90% had an S‐RBD‐specific IgG titer of ≥1:160 and 78% had a titer of ≥1:640 at the time of plasma donation. Of the 30 convalescent plasma donors, who had donated plasma later than 28 days after the onset of symptoms and had a disease presentation of fever lasting longer than 3 days or a body temperature exceeding 38.5°C, 100% had an S‐RBD‐specific IgG titer of ≥1:160 and 93% had a titer of ≥1:640. CONCLUSION This study indicates that the S‐RBD‐specific IgG antibody reaches higher levels after 4 weeks from the onset of COVID‐19 symptoms. We recommend the following selection criteria for optimal donation of COVID‐19 convalescent plasma: 28 days after the onset of symptoms and with a disease presentation of fever lasting longer than 3 days or a body temperature exceeding 38.5°C. Selection based on these criteria can ensure a high likelihood of achieving sufficiently high S‐RBD‐specific IgG titers.
Citicoline (CDPC) is a natural supplement with well-documented neuroprotective effects in the treatment of neurodegenerative diseases. In the present study, we sought to exploit citicoline as a theranostic agent with its inherent chemical exchange saturation transfer (CEST) MRI signal, which can be directly used as an MRI guidance in the citicoline drug delivery. Our in vitro CEST MRI results showed citicoline has two inherent CEST signals at +1 and +2 ppm, attributed to exchangeable hydroxyl and amine protons, respectively. To facilitate the targeted drug delivery of citicoline to ischemic regions, we prepared liposomes encapsulating citicoline (CDPC-lipo) and characterized the particle properties and CEST MRI properties. The in vivo CEST MRI detection of liposomal citicoline was then examined in a rat brain model of unilateral transient ischemia induced by a two-hour middle cerebral artery occlusion. The results showed that the delivery of CPDC-lipo to the brain ischemic areas could be monitored and quantified by CEST MRI. When administered intra-arterially, CDPC-lipo clearly demonstrated a detectable CEST MRI contrast at 2 ppm. CEST MRI revealed that liposomes preferentially accumulated in the areas of ischemia with a disrupted blood-brain-barrier. We furthermore used CEST MRI to detect the improvement in drug delivery using CDPC-lipo targeted against vascular cell adhesion molecule (VCAM)-1 in the same animal model. The MRI findings were validated using fluorescence microscopy. Hence, liposomal citicoline represents a prototype theranostic system, where the therapeutic agent can be detected directly by CEST MRI in a label-free fashion.
As a first application, we used 10- and 70-kD dextrans to visualize the spatially variable, size-dependent permeability in the tumor, indicating that nano-sized dextrans can be used for characterizing tumor vascular permeability with dexCEST MRI and, potentially, for developing dextran-based theranostic drug delivery systems. Magn Reson Med 79:1001-1009, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.